

Annual Review 2020/21

Borg Panels Oberon

124 Lowes Mount Road, Oberon NSW

Borg Panels Pty Ltd

23 JULY 2021

Revision History

Rev	Revision	Author /	Details	Authorised	
No.	Date	Position		Name / Position	Signature
0	17/06/2021	Jacqueline Blomberg Environmental Manager	Draft for review		
1	23/07/2021	Jacqueline Blomberg Environmental Manager	For submission to DPIE	Victor Bendevski Environmental and Regulatory Compliance	Mendelij.

Table of Contents

1		Introduction	5			
	1.1	Scope	5			
	1.2	Background	5			
	1.3	Consent	7			
	1.4	Annual Review Requirements	8			
	1.5	Environment Protection Licence				
	1.6	Water Licences				
	1.7	Trade Waste Licence				
	1.8	Environmental Management Plans				
	1.9	Contacts				
	1.10	Actions Required from Previous Annual Review				
2	_	Operations during the Reporting Period				
_	2.1	Production				
	2.2	Facility Improvements				
	2.2	Site Activities				
	-	Vood Recycling Program				
3	2.7 V	Waste Management				
3	3.1	Solid Waste				
	3.1	Trade Waste				
	3.Z					
4		Environmental Monitoring and Performance				
	4.1	Environmental Management System				
	4.2	Meteorological Data				
	4.3	Air Quality				
	4.4	Surface Water				
		4.4.1 EPL 3035 Identification Point 1				
		EPL 3035 Identification Point 28				
	4.5	Groundwater				
_	4.6	Noise				
5		Community Relations				
	5.1	Environmental Complaints				
	5.2	Community Liaison				
6		Independent Audit	39			
7		Environmental Incidents & Non-compliances	40			
		7.1 Incidents				
		7.2 Non-conformances				
8		Activities Proposed for the next Annual Review Period				
Ŭ			TV			
۸	DDF	NDICIES	12			
		ndix A – Depositional Dust Monitoring Data				
	Appendix B – Air Quality Monitoring Report46					
Α	Appendix C – Surface Water Monitoring Data47					
	Appendix D – Groundwater Monitoring Data					
	Appendix E – Annual Noise Monitoring Report					
	Appendix F – Construction Noise Monitoring Reports					
A	Appendix G – Community Complaints53					

Appendix H – Community Consultation Minutes	56
Appendix I – Water Quality Exceedance Notifications	57

Figure 1 Regional context	6
Figure 2 SSD 7016 Approved Development Area	
Figure 3 Recorded Rainfall (mm) at Borg Panels Meteorological Station	
2020/21	16
Figure 4 Daily Summary Average Wind Rose 2020/21	18
Figure 5 Depositional Dust Gauge Locations	19
Figure 6 Surface water management system - SSD 7016	
Figure 7 Groundwater Monitoring Locations	31
Figure 8 Borg Panels noise monitoring locations	

Annual Review Title Block

Name of operation	Borg Panels Pty Ltd.
Name of operator	Borg Manufacturing
Development consent / project	SSD 7016
approval #	330 7010
Name of holder of development	Borg Construction
consent / project approval	
Mining lease #	N/A
Name of holder of mining lease	N/A
Water Access Licence #	80WA715797
Name of holder of water licence	Borg Panels Pty Ltd.
MOP/RMP start date	N/A
MOP/RMP end date	N/A

I, Victor Bendevski, certify that this audit report is a true and accurate record of the compliance status of Borg Panels Oberon for the period 1st May 2020 to 30th April 2021 and that I am authorised to make this statement on behalf of Borg Panels Pty Ltd

Note.

- a) The Annual Review is an 'environmental audit' for the purposes of section 122B(2) of the Environmental Planning and Assessment Act 1979. Section 122E provides that a person must not include false or misleading information (or provide information for inclusion in) an audit report produced to the Minister in connection with an environmental audit if the person knows that the information is false or misleading in a material respect. The maximum penalty is, in the case of a corporation, \$1 million and for an individual, \$250,000.
- b) The Crimes Act 1900 contains other offences relating to false and misleading information: section 192G (Intention to defraud by false or misleading statement maximum penalty 5 years imprisonment); sections 307A, 307B and 307C (False or misleading applications/information/documents—maximum penalty 2 years imprisonment, \$22,000, or both.)

Name of authorised reporting officer	Victor Bendevski
Title of authorised reporting officer	Environment and Regulatory Compliance
Signature of authorised reporting officer	Benduliz?
Date	23/07/2021

1 Introduction

1.1 Scope

This Annual Review has been prepared for the Borg Panels Oberon site and covers the twelve-month reporting period from 1 May 2020 to 30 April 2021. This Annual Review has been prepared to satisfy condition C11 of Development Consent SSD 7016 issued by the Minister for Planning on 29 May 2017.

The Borg Panels facility is located at 124 Lowes Mount Road, Oberon and consists of a medium density fibreboard (MDF) and particleboard manufacturing plant and a mouldings manufacturing plant. During this reporting period Borg undertook a trial of the receipt, processing and use of urban wood residue (UWR) as an alternative raw material to be used in the production of particleboard. The trial was conducted over a 12-month period and concluded on 30th August 2020 under EPL 3035 section 8 Special Conditions.

This Annual Review is submitted to NSW Department of Planning, Industry and Environment (DPIE), NSW Environment Protection Authority (EPA) and Oberon Council to ensure all interested parties are kept informed of the environmental performance of the Development. The Annual Review is also made available on the Borg Panels website:

https://www.borgmanufacturing.com.au/oberon-panels-site-information/

Borg Panels generally maintained compliance with necessary approvals and licenses with the exception of EPL 3035 condition L2.5 as listed in Table 1. These non-compliance items are discussed in Section 4.4 Surface Water. There were no EPA reportable incidents during this review period.

Relevant approval	Condition	Condition description (summary)	Compliance status	Comment	Where addressed in Annual Review
SSD 716	C11	Annual review	Compliant		1.4 Annual Review Requirements
EPL 3035	Section 3 L4.1	Noise	Compliant		
EPL 3035	Section 3 L2.4	Air Quality	Compliant		
EPL 3035	Section 3 L2.5	Water Quality	Non-compliant	Exceedances of EPL 3035 water discharge limits	4.4 Surface Water
WAL28951	N/A	Aquifer extraction	Compliant		

Table 1 Compliance

1.2 Background

In March 2010, Borg Panels acquired the former Carter Holt Harvey MDF and mouldings plant at Oberon. In 2012 Borg Panels further acquired the associated JeldWen factory that adjoins the MDF plant. Borg have integrated the facilities into one site, which they own and operate (see Figure 1).

The Borg Panels facility forms part of the wider Oberon Timber Complex, manufacturing a range of MDF products (Custom wood) and particleboard including:

- Standard MDF;
- Moisture Resistant MDF;
- E0 (Low Formaldehyde Emitting) MDF;
- Ultraprime MDF Mouldings;
- Decorative Laminated MDF and Particle Board;
- Treated paper for the lamination of MDF and Particle Board;
- Raw Standard Particleboard for joinery and laminating applications;
- Raw Moisture Resistant Particleboard for joinery and laminating applications; and
- Particleboard flooring products for structural applications.

Figure 1 Regional context

1.3 Consent

Development Consent SSD 7016 was issued by the Minister for Planning on 29 May 2017 to construct and operate a particleboard facility, and continuation of and alterations and additions to, the existing medium density fibreboard facility.

Condition A26 of SSD 7016 required Borg Panels to modify DA27/95. Borg submitted a Section 96 Modification Application requesting removal of condition A26. This application also included a minor change to the orientation of the material handling building at particleboard, an increase to the warehouse footprint and amendments to the stormwater management system at the northern section of the site. A determination was received from the Department approving this application on 20 November 2018 (SSD 7016 MOD 1 – Site layout changes).

Under Modification of Development Consent SSD 7016 MOD 2 Borg proposed to install a high-pressure natural gas pipeline connection and turbine, and ancillary equipment to produce electricity and utilise waste exhaust heat in the particleboard manufacturing process. The Minister for Planning provided approval for MOD 2 on 29 November 2019.

Activities proposed under Modification 3 include the installation of additional equipment to the materials handling area for better separation and removal of undesirable materials found in the recycled wood that is used in the production of particleboard, and the addition of an enclosed awning to the northern end of the Northern Warehouse for more optimized truck loading/unloading. Works to the site stormwater management system are also occurring under MOD 3. These include reclamation of the overflow effluent pond and reinstatement at another location to allow for further hardstand, and changes to the stormwater conveying swales and ponds to allow construction of the hardstand and also to separate surface water flows between Borg and HPP, including the construction of a new HPP discharge point.

Approval was provided by the Minister of Planning for MOD 3 on 22 May 2020.

A summary of development consents including modifications currently held by Borg Panels is presented in Table 2.

Consent Description	Approval Date	Approval Authority	Approved Development
Development Consent SSD 7016	29 May 2017	NSW Minister for Planning	Construction and operation of a particle board facility and continuation of, and alterations and additions to, the existing medium density fibreboard facility.
Development Consent SSD 7016 MOD 1	20 November 2018	NSW Minister for Planning	Site layout changes Surrender of DA27/95
Development Consent SSD 7016 MOD 2	29 November 2019	NSW Minister for Planning	Installation of an electricity generating gas turbine and ancillary equipment
Development Consent SSD 7016 MOD 3	22 May 2020	NSW Minister for Planning	Additional material handling equipment, extension to the Northern Warehouse, changes to the site surface water system and construction of further hardstand.

Table 2 Borg Panels Development Consents

1.4 Annual Review Requirements

In accordance with condition C11 of Development Consent SSD 7016, annual review requirements and the sections within this review where these are addressed have been summarised in Table 3.

Table 3 Annual Review Requirements

Develo	oment Consent SSD 7016 – Condition C11	Section of Annual Review	
Secreta the envi	uly 2017, and each year thereafter, unless otherwise agreed by the ry, the Applicant must review and submit a report to the Secretary detailing ronmental performance of the Development to the satisfaction of the ry. This review must:	This Report	
(a)	describe the development that was carried out during the reporting period, and the development that is proposed to be carried out over the next reporting period;	Section 2 Section 7	
(b)	 include a comprehensive review of the monitoring results and complaints records of the Development over the previous reporting period, which includes a comparison of these results against the: i. relevant statutory requirements, limits or performance measures/criteria; 	Section 4 Section 5	
	ii. requirements of any plan or program required under this consent;iii. the monitoring results of previous years; andiv. the relevant predictions in the EIS;		
(c)	identify any non-compliance during the reporting period, and describe what actions were (or are being) taken to ensure compliance;	Section 4 Section 6	
(d)	identify any trends in the monitoring data over the life of the Development;	Section 4	
(e)	identify any discrepancies between the predicted and actual impacts of the Development, and analyse the potential cause of any significant discrepancies; and	Section 4	
(f)	describe what measures will be implemented over the next reporting period to improve the environmental performance of the Development.	Section 7	

1.5 Environment Protection Licence

Borg Panels operates in accordance with Environment Protection Licence 3035 (EPL 3035), issued on 14 February 2001 by the NSW Environment Protection Authority (EPA) under Section 55 of the *Protection of the Environment Operations Act 1997*. The current Licence version date is 04 September 2019.

1.6 Water Licences

Borg Panels holds a Water Access Licence for use of groundwater in operations. Current licence details issued under the *Water Management Act 2000* are summarised in Table 4.

Table 4 Water Licences

Approval Details	Approval Number	Validity of Licence	Approval Kind	Extraction Limit
WAL28951	80WA715797	16 January 2012 – 01 March 2026	Water Extraction	28 Units

1.7 Trade Waste Licence

Borg Panels Trade Waste Service Contract with Oberon Council for the discharge of liquid trade wastes into Council's sewerage system was not applicable this reporting period as there was no renewal of the licence. Borg Panels now treats its liquid trade waste on site.

1.8 Environmental Management Plans

As per Schedule 2 Part C of SSD 7016, construction activities continue to be undertaken in accordance with the Construction Environmental Management Plan (CEMP) and the existing development in accordance with the Operational Environmental Management Plan (OEMP) and associated sub-plans.

In accordance with C10 Revision of Strategies, Plans and Programs, environmental management plans were reviewed, and minor amendments made where necessary. In this review period the following Plans were updated:

- Operational Environmental Management Plan
- Operational Noise Management Plan
- Operational Air Quality Management Plan
- Surface Water Management Plan
- Erosion and Sediment Control Plan
- Waste Management Plan

1.9 Contacts

Table 5 outlines the contact details for site personnel responsible for managing environmental operations the Borg Panels facility.

Table 5 Site Personnel

Name Title		Contact Details
Tony Truscott	Facility Manager	+61 436 613292
Victor Bendevski	Environmental and Regulatory Compliance	(02) 4340 9827
Jacqueline Blomberg	Environmental Manager	+61 436 609 556

1.10 Actions Required from Previous Annual Review

The actions listed in Table 6 were identified in the 2019/20 Annual Review for implementation during this 2020/21 reporting period.

Table 6 Proposed Activities in 2019/20 Reporting Period

Activities Proposed in 2019/20 Reporting Period	Results achieved in 2020/21 Reporting Period	
Ongoing implementation of Environmental Management Plans for the existing development and the project.	Ongoing implementation of the OEMP, CEMP and sub plans including environmental inspections undertaken at least monthly. Inspections recorded and actions assigned accordingly, and use of DataStation to track progress and close out. CEMP, OEMP and sub plans reviewed and updates performed where:	
	 changes to site operations (existing and project); and 	
	b) in accordance with SSD 7016 C10.	

Carry out comprehensive Hazard Audit (SSD 7016 condition B42	Hazard Audit undertaken and findings submitted to DPIE on 17 December 2020. DPIE issued an RFI which Borg provided a response to on 11 March 2021. DPIE were satisfied with the response and no further information was required (DPIE response letter dated 1 April 2021).
Complete verification studies required for the particleboard plant under SSD 7016 conditions of consent	 B11 Air Emission Verification Study, DPIE approval provided on 8 February 2021 B20 Noise Verification Study, DPIE approval provided on 11 January 2021 B23 Cogen Noise Study submitted to EPA for consultation(via Major Project portal) on 26 November 2020 (SSD-7016-PA-18). Email correspondence with EPA on 20 January 2021 and 1 June 2021 requesting update on review. Advised review still underway.
Complete reporting requirements related to the commissioning of particleboard plant under SSD 7016 conditions of consent	 B9 Cogen Post Commissioning Report, response from DPIE received 4 August 2020. Ongoing (annual) air monitoring required as per EPA direction. B41 Post Start Up Compliance Report, acceptance letter from DPIE received 18 December 2020
Continue with implementation of various management and mitigation measures as detailed in the development consent, including additional items provided in SSD 7016 MOD 1 and MOD 2	As reported in this Annual Review. All additional conditions pertaining to MODs have been incorporated into Borg document OBERON Approvals and Licencing Compliance Register.
Complete the installation of the gas turbine and construction of the associated ancillary infrastructure (MOD 2)	Construction activities were completed during this reporting period. Commissioning to occur during next reporting period.
Install Cleaning tower for recycled wood	Construction was not complete during this reporting period
Undertake required environmental monitoring associated with the newly installed gas turbine	To be undertaken during next reporting period
Continue research into plant/equipment with potential to further reduce pollutants emitted from the facility	Pollution Reduction Program undertaken by Todoroski Air Science Pty Ltd. Report issued 27 November 2020.

2 Operations during the Reporting Period

2.1 Production

Development Consent SSD 7016 allows for production of up to 380,000 m³ of MDF and 500,000 m³ of particleboard per calendar year. During this reporting period Borg Panels manufactured 258,936m³ of MDF and 334,874m³ of particleboard.

2.2 Facility Improvements

The following improvements were made to site infrastructure, plant and/or equipment during the reporting period:

• Reclamation of the effluent overflow process water dam to allow for construction of further hardstand to facilitate further parking and improve operability of the site;

- Reinstatement of effluent overflow process water dam adjacent the water treatment plant;
- Addition of enclosed awning to the northern extension where loading and unloading activities occur, to better minimise potential noise disturbance;
- Creation of additional emergency catchment dam and associated site drainage channels;
- Commence stormwater harvesting from first flush basin; and
- Installation of roof top solar panels to the northern extension building.

2.3 Site Activities

The following activities associated with the construction of the particleboard facility and modifications to existing operations occurred during the reporting period:

- major earthworks at the northern boundary complete.
- construction of storage warehouse and northern building extension complete. Infrastructure points 22 and 25 in Figure 2.
- installation of new electricity generating gas turbine and ancillary equipment complete. Infrastructure point 36 in Figure 2.
- commenced construction of sorting tower at the materials handling area
- completed construction of northern warehouse extension awning. Included as part of Infrastructure point 22 in Figure 2.
- commenced construction of further hardstand at the northern section of site
- continue alterations to the existing site surface water system.

Environmental commitments and management/mitigation measures that were applied during the reporting period include the following:

- operational works undertaken in accordance with the Operational Environmental Management Plan and sub-plans;
- construction works undertaken in accordance with the Construction Environmental Management Plan and sub-plans;
- attended noise verification monitoring;
- air emission verification monitoring;
- water quality sampling events;
- site environmental inspections; and
- site wide communication of environmental requirements via EHSR Alerts and Toolbox Talks.

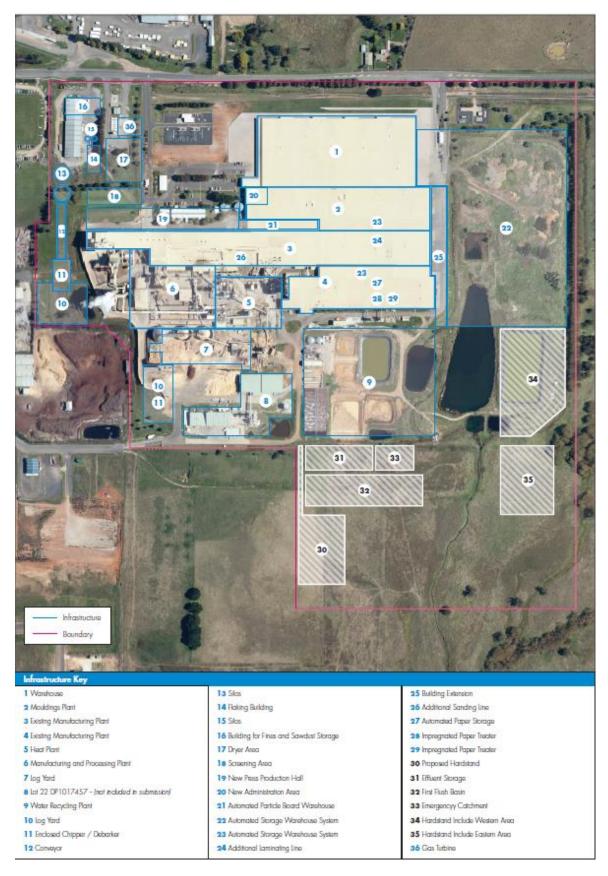
2.4 Wood Recycling Program

As mentioned above in section 1.1 Scope, as a sustainability initiative Borg undertook a trial of the receipt, processing and use of urban wood residue (UWR) as an alternative raw material used in the production of particleboard during this reporting period. Authority for the trial of UWR was provided by the EPA and was included in Special Condition E.1 of EPL 3035. The EPA also issued The Borg Panels Urban Wood Residue trial order and exemption September 2019 under clauses 91 and 92 of the Protection of the Environment Operations (Waste) Regulation 2014 for this initiative.

Borg developed a Quality Control Plan (QCP) to define a standard approach for ensuring that the quality of recovered UWR received by Borg during this trial met with our specified requirements, our EPA licence conditions (EPL 3035) and Development Consent SSD 7016 as well as relevant NSW Government statutory regulations, and policies. The trial was conducted over a period of 12 months and concluded on 30 August 2020.

During the trial Borg utilised 11,000 tonnes of UWR – diverting this waste material from landfill into productive use in new and high-quality particleboard products. As UWR has a much lower moisture content compared to virgin forest wood fibre, this initiative also resulted in an energy saving of approximately 8,000 MW, a substantial reduction in our natural gas consumption and greenhouse gas emissions.

Air emission sampling and testing were required to be undertaken in accordance with the sampling method, units of measure and sampling frequency specified in condition M2.2 of EPL 3035 at licence discharge points 29, 30, 31 and 32 for the following analytes:


- Formaldehyde
- Nitrogen Oxides
- PM10
- Smoke Emissions
- Total Solid Particles

Following the conclusion of the trial a report was submitted to the EPA assessing the results of the UWR characterisation and air emission sampling, and also providing commentary on whether the UWR Quality Control Plan (QC Plan) was 'fit for purpose' over the period of the trial. The report also identified, where appropriate, any deficiencies or problems encountered during the trial and actions taken to prevent a recurrence.

The report concluded that the use of UWR collected to our specification made little or no difference to air emissions, and the UWR QC Plan, with some refinements, was 'fit for purpose' over the trial period.

The EPA issued *The Borg Panels Urban Wood Residue order March 2021(RRO)* and *The Borg Panels Urban Wood Residue exemption March 2021(RRE)* on 30 March 2021. The order and exemption commenced on 30 March 2021 and are valid until 30 March 2023.

Figure 2 SSD 7016 Approved Development Area

3 Waste Management

Waste generated at the Borg Panels site is managed in accordance with the Waste Management Plan that has been developed for the facility. The management process incorporates a system of recycling and reuse of waste materials where possible. Waste that cannot be incorporated into this system is removed from site and taken to landfill for lawful disposal.

3.1 Solid Waste

A summary of waste removed from Borg Panels during the reporting period is provided in Table 7.

Month	th Description				Destination
Litres m ³		m ³	Tonnes	Waste	
May 2020		870		General	Oberon Council Waste Depot
			34.32	Waste requiring burial	Bathurst Regional Council
June 2020	ine 2020 600 General		Oberon Council Waste Depot		
			22.76	Waste requiring burial	Bathurst Regional Council
July 2020		860		General	Oberon Council Waste Depot
			21.02	Waste requiring burial	Bathurst Regional Council
August	3100			Oil	Nationwide Oil
2020		850		General	Oberon Council Waste Depot
			1.88	Waste requiring burial	Bathurst Regional Council
September	9000			Oil	Nationwide Oil
2020		820		General	Oberon Council Waste Depot
			32.84	Waste requiring burial	Bathurst Regional Council
October 2020		680		General	Oberon Council Waste Depot
			53.52	Waste requiring burial	Bathurst Regional Council
November	4700			Oil	Nationwide Oil
2020		820 General		General	Oberon Council Waste Depot
		60 Building/demolition		Oberon Council Waste Depot	
			15.18	Waste requiring burial	Bathurst Regional Council
December	5900			Oil	Nationwide Oil
2020		450		General	Oberon Council Waste Depot

Table 7 Waste Management 2020/21

Month			Destination		
	Litres	m ³	Tonnes	Waste	
January 2021		550		General	Oberon Council Waste Depot
			13.3	Waste requiring burial	Bathurst Regional Council
February	2100			Oil	Nationwide Oil
2021		590		General	Oberon Council Waste Depot
			13.64	Waste requiring burial	Bathurst Regional Council
March	4900			Oil	Nationwide Oil
2021		860		General	Oberon Council Waste Depot
			43.92	Waste requiring burial	Bathurst Regional Council
April 2021		542		General	Oberon Council Waste Depot
TOTAL		8492		General Waste	Oberon Council Waste Depot
		60		Building/Demolition Waste	Oberon Council Waste Depot
			252.38	Waste requiring Burial	Bathurst Regional Council
	29700			Waste Oil	Nationwide Oil Pty Ltd

Waste types in Table 7 are further described as:

- General waste including a mix of both putrescible and non-putrescible waste;
- Waste requiring burial made up of urea formaldehyde spade-able resin and paraffin wax bladders;
- Building and demolition waste including concrete, metal and timber are recycled when appropriate; and
- Used oils from the plant process oil systems and mechanical workshop are recycled off site via third parties.

There was no trackable waste generated during this reporting period.

3.2 Trade Waste

Borg Panels Trade Waste Service Contract with Oberon Council for the discharge of liquid trade wastes into Council's sewerage system was not applicable during this reporting period as there was no renewal of the licence. Borg Panels treats its liquid trade waste on site.

4 Environmental Monitoring and Performance

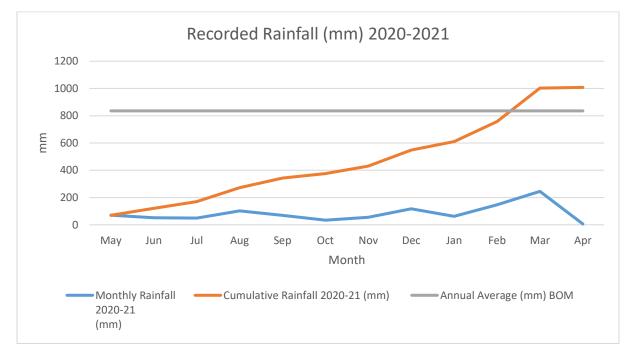
4.1 Environmental Management System

Borg Panels operates in accordance with the Operational Environmental Management Plan (OEMP) as documented in Section 1.8. This OEMP aims to ensure adequate management, monitoring and mitigation systems are in place to protect the surrounding environment. Similarly, construction activities are undertaken in accordance with the Construction Environmental Management Plan (CEMP).

Environmental monitoring is conducted in accordance with the requirements of SSD 7016, its subsequent modifications (MOD1, MOD2 & MOD3), and EPL 3035. Environmental monitoring is an integral part of Borg Panels environmental management system. The measurement and evaluation of monitoring results allows for the assessment of performance against quantitative and qualitative standards and assists in the identification of any non-conformances or areas that may require additional attention.

4.2 Meteorological Data

Borg Panels operate and maintain a meteorological monitoring station located east of the existing Spring Dam (EPA Point 26). The following section summarises the meteorological data for the 2020/21 reporting period.


4.2.1 Rainfall

The total monthly rainfall (mm) and number of rain days during this reporting period recorded at EPA Point 26 is shown in Table 8 and displayed in Figure 3 below. Total recorded rainfall for the period was 1,008mm. This is 172.3mm above the annual mean rainfall of 835.7mm for the Oberon region (Bureau of Meteorology, Oberon Springbank Site No. 063063).

Table 8 Recorded Rainfall 2020/21

	Total Monthly Rainfall (mm)											
Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Total
69.8	51	49.6	102.4	69.4	33.8	55.2	117.2	62.2	146.4	245.2	5.8	1008
	Number of Rain Days (≥0.2mm)											
8	9	10	16	11	8	9	11	11	11	13	3	120

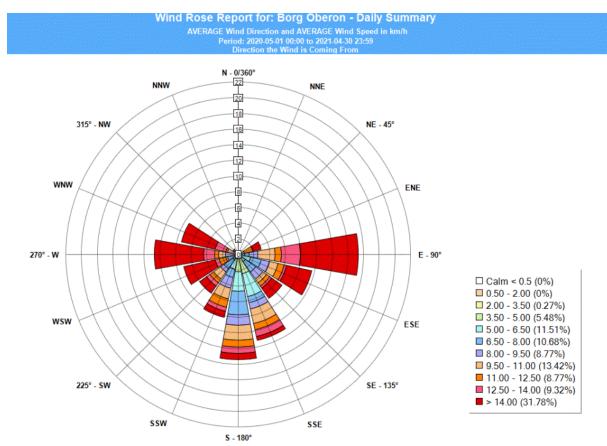
Figure 3 Recorded Rainfall (mm) at Borg Panels Meteorological Station 2020/21

4.2.2 Temperature

Monthly maximum and minimum temperatures recorded from the site weather station during the reporting period are shown in Table 9.

Table 9 Monthly I	Minimum	and	Maximum	Temperatures	2020/21
raisie e menany i				10111001 atal 00	

Minimum and Maximum Monthly Temperatures (°C)											
Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr
-4.2	-4.7	-5.2	-4.7	-3.5	-0.1	2.4	0.6	5.1	8.7	2.1	-2.6
16.7	14.5	13.5	16.9	21	22.8	30.4	31.6	33.4	27.7	26.4	24


4.2.3 Wind Speed and Direction

The site weather station recorded wind speed and direction data is summarised in Table 10. The annual wind rose for the reporting period is displayed in Figure 4.

Table 10 Monthly Daily Wind Data 2020/21

Month	Maximum Wind Speed (km/hr)	Mean Wind Speed (km/hr)	Dominant Wind Direction
May 2020	54.4	11.9	184° (S)
June 2020	42.4	11.4	180° (S)
July 2020	50.5	10.2	183° (S)
August 2020	56.5	14.4	222° (SW)
September 2020	52.8	13	201° (SSW)
October 2020	71.5	12.4	180° (S)
November 2020	57.3	11	184° (S)
December 2020	53.8	14.9	165° (SSE)
January 2021	53.8	13	156° (SSE)
February 2021	45.8	13.5	141° (SE)
March 2021	51.5	13.7	160° (SSE)
April 2021	42.2	9.1	179° (S)

Figure 4 Daily Summary Average Wind Rose 2020/21

4.3 Air Quality

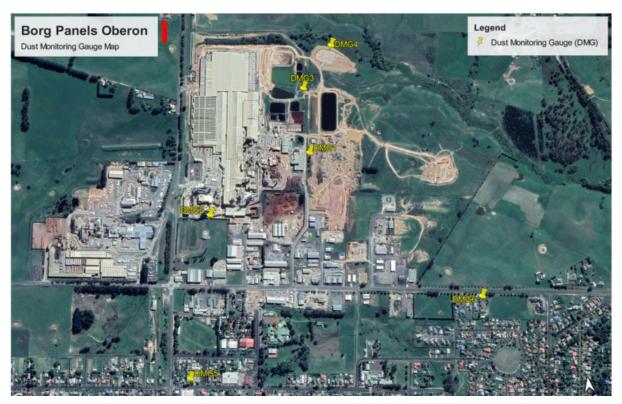
4.3.1 Dust Depositional Gauges

Dust deposition monitoring is undertaken in accordance with the Borg Panels Operational Air Quality Management Plan (OAQMP). Condition O3 of EPL 3035 states that:

The premises must be maintained in a condition which minimises or prevents the emission of dust from the premises.

EPL 3035 does not specify dust deposition monitoring be undertaken, Borg conduct this to assist with site management. The air quality criteria adopted for deposited dust is provided in Table 11.

Table 11	Air Quality	v Criteria	Deposited	Dust
----------	-------------	------------	-----------	------


Averaging Period	Impact	Criteria
Annual	Incremental	2 g/m ² /month
	Total	4 g/m ² /month

There are six dust depositional gauges (DMG) located in and around the site. Five were sampled from May to November 2020 as the sixth (DMG4) had been removed to allow completion of construction activities in the immediate location of DMG4. This dust gauge was ultimately relocated further east of its original location on the northern boundary as the initial location was no longer suitable to access. The locations of dust depositional gauges are listed in Table 12 and shown in Figure 5.

Dust Depositional Gauge	Location Description
DMG 1	Borg Panels eastern boundary with Woodchem
DMG 2	Materials handling building
DMG 3	Water treatment plant
DMG 4	Northern boundary
DMG 5	Highlands Motor Inn, South of Borg Panels Plant
DMG 6	Albion Street, East of Borg Panels plant

Figure 5 Depositional Dust Gauge Locations

DMGs 1 to 4 are located on the periphery of the site. DMG 1 is located within the operational boundary of the site immediately adjacent to an unsealed laydown area and in general proximity of an unsealed road. DMG 2 is located adjacent to the materials handling building. DMG 1 and DMG 2 returned results showing exceedances of the annual average criteria of 4g/m². DMG 1 is exposed to regular traffic and day-to-day activities with DMG2 near the materials handling building which can produce wood dust. As these are on-site gauges the criteria noted in Table 11 does not apply.

DMG 5 and DMG 6 are located at off-site receivers. There was no exceedance of the dust deposition criteria $(4g/m^2)$ at these locations.

Deposited dust is assessed as insoluble solids as defined by *Standards Australia* AS3580.10.1-2003: Methods for Sampling and Analysis of Ambient Air – Determination of *Particulates* – Deposited Matter – Gravimetric Method. During the reporting period all dust samples were collected by trained specialists and analysed by NATA certified laboratories.

Table 13 provides a summary of Borg Panels annual average results for insoluble solids during the reporting period and for the previous two years. Monthly data and rolling annual average data is provided in Appendix A.

Dust management measures are listed in Section 7.5 Air Quality (Dust) Management within the CEMP. Measures include but are not limited to evaluation of weather conditions (wind speed and direction), use of water cart to spray unsealed surfaces and stockpiles, limited stockpile heights, and clear communication to workers regarding their responsibilities to assist with managing dust via toolbox meetings and environmental training sessions.

No.	Location	Annual Average Insoluble Solids (g/m ² /month) 2018/19	Annual Average Insoluble Solids (g/m²/month) 2019/20	Annual Average Insoluble Solids (g/m²/month) 2020/21
DMG 1	Borg Panels eastern boundary with Woodchem	9.3	7.1	5.0
DMG 2	Materials handling building	5.2	4.6	2.4
DMG 3	Water treatment plant	2.7	2.8	1.3
DMG 4	Northern boundary	2.9	3.9	1.7
DMG 5	Highlands Motor Inn	1.9	2.3	0.6
DMG 6	Albion Street east of Borg Panels plant	1.7	2.4	0.6

Table 13 Dust Depositional Gauges Annual Average

Table 13 generally shows a reduction in average annual insoluble solids over time across all dust gauge locations.

4.3.2 Air Emissions Monitoring Points

The locations of air emission monitoring points are listed in Table 14 and are consistent with monitoring/discharge points noted in EPL 3035 licence version date 4 September 2019. Note there are two additional monitoring points identified in Table 14 which are not listed on the current version of EPL 3035. These points were provided by the EPA as a result of the Cogen Plant Post Commissioning Report dated 23 June 2020 (condition B9 of SSD 7016), to allow Borg to demonstrate ongoing compliance with air quality standards at these locations. Annual air emission monitoring included these two new locations being EPA Identification Points 33 and 34.

There are no air emission monitoring requirements under SSD 7016. Full laboratory results are attached to this document as Appendix B.

EPA Identification No.	Description
4	DC1 Baghouse
5	DC2 Baghouse
7	Conti 2 Stage 1 Dryer Cyclone #1 (west)
8	Conti 2 Stage 1 Dryer Cyclone #2 (east)
9	Conti 1 Dryer Cyclone #1 (south)
10	Conti 1 Dryer Cyclone #2 (north)
11	Conti 2 Heat Plant
12	Press Vents Conti 1
17	Conti 1 Heat Plant
18	Press exhaust vents
19	Dryer stack
20	Reject cyclone DC 11
21	Reject cyclone DC 12
22	Reject cyclone DC 13
27	Combined Conti 2 Press Vent
29	Forming Line Baghouse
30	Form Station Baghouse
31	Particleboard Press Extraction
32	Wet Electrostatic Precipitator (WESP)
33	Cogeneration Unit 1
34	Cogeneration Unit 2

Table 14 Location of Air Emissions Monitoring

EPA Identification Points 18, 19, 20, 21 and 22 are recognised as discharge points in EPL 3035 however there is no requirement to monitor the concentration of pollutants discharged at these points. In any case, this plant is dormant. Similarly, Points 11 and 17 do not produce flow. The exhaust for Conti 2 heat plant (Point 11) is ducted back into Conti 2 dryer cyclones (Points 7&8), and exhaust for Conti 1 heat plant (Point 17) is ducted back into the Conti 1 production system (Points 9&10).

EPL 3035 licence version date 4 September 2019 removed the requirement to monitor for volatile organic compounds (VOCs) from monitoring points 7, 8, 9 and 10. Under this EPL additional monitoring requirements (pollutants) were included for Points 7 and 8, and new licence and discharge monitoring points 29, 30, 31, 32, 33 and 34 as described in Table 14.

4.3.3 Air Monitoring

Environment Protection Licence 3035 sets pollution concentration limits for emission Points 7, 8, 9, 10, 33 and 34 as shown in Table 15. All plant and equipment must comply with the relevant concentration standards listed in Schedule 2, 3 and 4 of the *Protection of the Environment Operations (Clean Air) Regulation 2010* where pollution limits are not specified

in the EPL. Monitoring results are assessed against these criteria to determine compliance with air emission limits.

Pollutant	ID Point	Units of Measure	100 Percentile Concentration Limit	Reference Condition	Oxygen Correction	Averaging Period
Total Solid Particulates	7,8,9,10	mg/m ³	200	n/a	n/a	n/a
Formaldehyde	7,8,9,10	mg/m ³	5	n/a	n/a	n/a
Nitrogen Oxides	33,34	mg/m ³	450	Dry, 273K, 101.3kPa	5%	1 hour
VOC (as n- propane equivalents)	33,34	mg/m ³	20	Dry, 273K, 101.3kPa	5%	1 hour

Table 15 EPL 3035 Air Concentration Limits

Source: EPL 3035 (04 September 2019)

Air emission monitoring was undertaken by trained specialists and samples analysed by NATA certified laboratories. Monitoring equipment is maintained by the consultant and calibrated in accordance with the manufacturer's specifications by qualified specialists. This monitoring is performed in accordance with the methodologies as specified in the *Approved Methods for the Sampling and Analysis of Air Pollutants in New South Wales* and the requirements of EPL 3035. USEPA Method GD-008 is the approved method for determining flow rate and sampling for particulate matter in cyclonic flow from licenced discharge Points 7, 8, 9 & 10.

For each discharge point identified in Table 14 above, Borg Panels monitored the concentration of each pollutant as specified in EPL 3035. The results for this period are compared against results from the previous two years as displayed in Tables 16-35.

Table 16 Air Emissions Monitoring Results EPA Identification Point 4

Pollutant	Units	Frequency	2018/19	2019/20	2020/21
Total Solid Particles	mg/m³	Yearly	3.3	<2	<2
Formaldehyde	mg/m ³	Yearly	2.8	2.4	1.5

Table 17 Air Emissions Monitoring	Results EPA Identification Point 5
-----------------------------------	------------------------------------

Pollutant	Units	Frequency	2018/19	2019/20	2020/21
Total Solid Particles	mg/m ³	Yearly	3.1	<2	<2
Formaldehyde	mg/m ³	Yearly	1.5	1.1	2.5

Table 18 Air Emissions Monitoring Results EPA Identification Point 7

Pollutant	Units	Frequency	2018/19	2019/20	2020/21
Total Solid Particles	m a /m 3	Veerly	40	45	79
	mg/m ³	Yearly	43	45	79 1.6
Formaldehyde	mg/m ³	Yearly	-	2	-
Nitrogen oxides	mg/m ³	Yearly	-	210	140
PM10	mg/m ³	Yearly	-	32	8.9
Smoke	Obscuration	Every 6 months	-	0	0

Pollutant	Units	Frequency	2018/19	2019/20	2020/21
Total Solid Particles	mg/m ³	Yearly	43	26	68
Formaldehyde	mg/m ³	Yearly	-	2.8	3
Nitrogen Oxides	mg/m ³	Yearly	-	170	210
PM10	mg/m ³	Yearly	-	24	28
Smoke Emissions	Obscuration	Every 6 months	-	0	0

Table 19 Air Emissions Monitoring Results EPA Identification Point 8

Table 20 Air Emissions Monitoring Results EPA Identification Point 9

Pollutant	Units	Frequency	2018/19	2019/20	2020/21
Total Solid Particles	mg/m ³	Yearly	21	71	38
Formaldehyde	mg/m ³	Yearly	4.8	1.5	4.8
Nitrogen Oxides	mg/m ³	Yearly	88	190	260
PM10	mg/m ³	Yearly	18	9.1	26
Smoke Emissions	Obscuration	6 Monthly	0	0	0
Volatile Organic Compounds	mg/m ³	Yearly	5.5	-	-

Table 21 Air Emissions Monitoring Results EPA Identification Point 10

Pollutant	Units	Frequency	2018/19	2019/20	2020/21
Total Solid Particles	mg/m ³	Yearly	28	110	41
Formaldehyde	mg/m ³	Yearly	4.9	2	4.7
Nitrogen Oxides	mg/m ³	Yearly	63	200	73
PM10	mg/m ³	Yearly	23	21	27
Smoke Emissions	Obscuration	6 Monthly	0	0	0
Volatile Organic Compounds	mg/m ³	Yearly	8.2	-	-

Table 20 and Table 21 show an increase in Total Solid Particles from the 2018/2019 to the 2019/2020 data. This is likely due to a reduced fan velocity at these dryer cyclones which was necessary as part of an investigation into a power reduction program for the site. As a result of this, the cyclones were readjusted with effectiveness evident in the 2020/21 TSP results.

Pollutant	Units	Frequency	2018/19	2019/20	2020/21
* Total Solid Particles	mg/m ³	Yearly	140*	-	-
Formaldehyde	mg/m ³	Yearly	0.34	-	-
Nitrogen Oxides	mg/m ³	Yearly	550	-	-
PM10	mg/m ³	Yearly	78	-	-

Volatile Organic Compounds	mg/m ³	Yearly	0.4	-	-
Smoke Emissions	Obscuration	6 Monthly	0	-	-
Nata +0	1 3				

Note: *Corrected to 6.5% CO₂ mg/m³

Table 23 Air Emissions Monitoring Results EPA Identification Point 12 Vent 1

Pollutant	Units	Frequency	2018/19	2019/20	2020/21
Total Solid Particles	mg/m ³	Every 3 years	-	-	3.3
Formaldehyde	mg/m ³	Every 3 years	-	-	5.4
Nitrogen Oxides	mg/m ³	Every 3 years	-	-	<4
PM10	mg/m ³	Every 3 years	-	-	<3

Table 24 Air Emissions Monitoring Results EPA Identification Point 12 Vent 2

Pollutant	Units	Frequency	2018/19	2019/20	2020/21
Total Solid Particles	mg/m ³	Every 3 years	-	-	7.2
Formaldehyde	mg/m ³	Every 3 years	-	-	6.5
Nitrogen Oxides	mg/m ³	Every 3 years	-	-	<4
PM10	mg/m ³	Every 3 years	-	-	4.8

Table 25 Air Emissions Monitoring Results EPA Identification Point 12 Vent 3

Pollutant	Units	Frequency	2018/19	2019/20	2020/21
Total Solid Particles	mg/m ³	Every 3 years	-	-	19
Formaldehyde	mg/m ³	Every 3 years	-	-	3.8
Nitrogen Oxides	mg/m ³	Every 3 years	-	-	<4
PM10	mg/m ³	Every 3 years	-	-	13

Table 26 Air Emissions Monitoring Results EPA Identification Point 12 Vent 4

Pollutant	Units	Frequency	2018/19	2019/20	2020/21
Total Solid Particles	mg/m ³	Every 3 years	-	-	28
Formaldehyde	mg/m ³	Every 3 years	-	-	1.2
Nitrogen Oxides	mg/m ³	Every 3 years	-	-	<4
PM10	mg/m ³	Every 3 years	-	-	20

Table 27 Air Emissions Monitoring Results EPA Identification Point 18

Pollutant	Units	Frequency	2018/19	2019/20	2020/21
Total Solid Particles	mg/m ³	Every 3 years	Dormant	Dormant	Dormant
Formaldehyde	mg/m ³	Every 3 years	Dormant	Dormant	Dormant
Volatile Organic Compounds	mg/m ³	Every 3 years	Dormant	Dormant	Dormant
Velocity	mg/sec	Every 3 years	Dormant	Dormant	Dormant

Table 28 Air Emissions Monitoring Results EPA Identification Point 19

Pollutant	Units	Frequency	2018/19	2019/20	2020/21
Total Solid Particles	mg/m ³	Yearly	Dormant	Dormant	Dormant
Nitrogen Oxides	mg/m ³	Yearly	Dormant	Dormant	Dormant
Volatile Organic Compounds	mg/m ³	Yearly	Dormant	Dormant	Dormant
Velocity	mg/sec	Yearly	Dormant	Dormant	Dormant

Table 29 Air Emissions Monitoring Results EPA Identification Point 27

Pollutant	Units	Frequency	2018/19	2019/20	2020/21
Total Solid Particles	mg/m ³	Yearly	5.3	13	7.6
Formaldehyde	mg/m ³	Yearly	2.1	1.6	1.9
Nitrogen Oxides	mg/m ³	Yearly	<20	<3	<4
PM10	mg/m ³	Yearly	2.2	9.6	5.2

Table 30 Air Emissions Monitoring Results EPA Identification Point 29

Pollutant	Units	Frequency	2018/19	2019/20	2020/21
Total Solid Particles	mg/m ³	Yearly	5.3	<2	<2
Formaldehyde	mg/m ³	Yearly	2.1	0.8	1.7
Nitrogen Oxides	mg/m ³	Yearly	<20	<3	<4
PM10	mg/m ³	Yearly	2.2	<2	<2
Smoke Emissions	Obscuration	Yearly	0.66	0	0

Table 31 Air Emissions Monitoring Results EPA Identification Point 30

Pollutant	Units	Frequency	2018/19	2019/20	2020/21
Total Solid Particles	mg/m ³	Yearly	5.3	1.8	<2
Formaldehyde	mg/m ³	Yearly	2.1	0.87	1.5
Nitrogen Oxides	mg/m ³	Yearly	<20	<3	<4
PM10	mg/m³	Yearly	2.2	<3	<4
Smoke Emissions	Obscuration	Yearly	0.66	0	0

Table 32 Air Emissions Monitoring Results EPA Identification Point 31

Pollutant	Units	Frequency	2018/19	2019/20	2020/21
Total Solid Particles	mg/m ³	Yearly	5.3	27	46
Formaldehyde	mg/m ³	Yearly	2.1	0.57	4.6
Nitrogen Oxides	mg/m ³	Yearly	<20	<3	<4

PM10	mg/m³	Yearly	2.2	25	40
Smoke Emissions	Obscuration	Yearly	0.66	0	0

Table 33 Air Emissions Monitoring Results EPA Identification Point 32

Pollutant	Units	Frequency	2018/19	2019/20	2020/21
Total Solid Particles	mg/m ³	Yearly	5.3	3.6	30
Formaldehyde	mg/m ³	Yearly	2.1	0.63	0.21
Nitrogen Oxides	mg/m ³	Yearly	<20	180	210
PM10	mg/m ³	Yearly	2.2	*	*
Smoke Emissions	Obscuration	Yearly	0.66	0	0

*Fine particulate testing could not be undertaken at this location due to excessively saturated gas stream

Table 34 Air Emissions Monitoring Results EPA Identification Point 33

Pollutant	Units	Frequency	2020/21	
Nitrogen Oxides	mg/m ³	Yearly	320	
VOC	mg/m³	Yearly	0.8	

Table 35 Air Emissions Monitoring Results EPA Identification Point 34

Pollutant	Units	Frequency	2020/21	
Nitrogen Oxides	mg/m ³	Yearly	390	
VOC	mg/m ³	Yearly	0.16	

There were nil exceedances of air concentration limits during this reporting period.

4.4 Surface Water

The existing surface water management system includes runoff from Borg Panels site and adjoining properties in the Oberon Timber Complex on the western side of Lowes Mount Road, and operates as follows:

- Runoff from Structaflor and Highland Pine Products Sawmill 2 flows across Lowes Mount Road and directed onto the site via the swale on the western boundary
- Runoff from rural parcels of land on Lowes Mount Road is also directed into the site from the western boundary, conveyed via a 'clean' water swale, which runs alongside the site swale following the northern boundary before discharging to a tributary of Kings Stockyard Creek
- Borg Panels roof and surface runoff from the western side of the facility is directed into the boundary swale and transferred into the existing stormwater flush basin
- Runoff from the eastern and open parts of the site, which contains fine fibrous wood material, is directed first to a gross pollutant trap (GPT) and then into the existing stormwater flush basin
- Any overflow from the existing stormwater flush basin is directed into the first flush basin

- Water captured in the basins is harvested by the site water treatment plant for reuse in the production system
- Stormwater harvesting averaged 222m3/day over the reporting period
- Runoff from construction areas is managed in accordance with Erosion Sediment Control Plans as part of the CEMP for SSD7016. Surface water from these zones is directed into the site swale then on to the stormwater basin
- Water discharges from EPL discharge Points 1 and 28 to a tributary of Kings Stockyard Creek (shown on Figure 6)

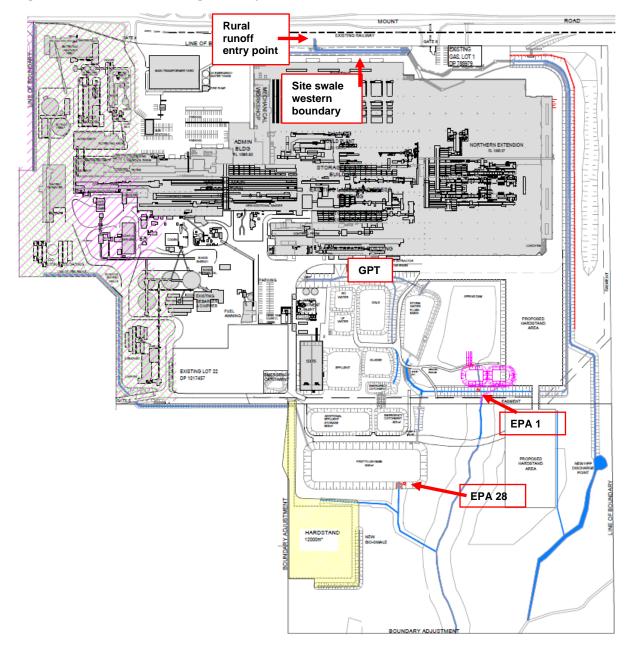


Figure 6 Surface water management system - SSD 7016

In accordance with EPL 3035, Borg Panels undertakes water quality monitoring weekly during discharge to manage compliance requirements. During this reporting period water discharge was from EPA Point 1 and Point 28. The concentration limit of a pollutant discharged from EPA Point 1 & 28 in EPL 3035 is shown below in Table 36.

Pollutant	Units of Measure	50 percentile concentration limit	100 percentile concentration limit
Aldrin	µg/L		0.3
Biochemical Oxygen Demand (BOD)	mg/L		20
Colour	Hazen	80	160
Dieldrin	µg/L		0.3
Methylene Blue Active Substances (MBAS)	mg/L		0.5
Nitrogen (Total)	mg/L		10
Oil and Grease	mg/L		10
рН	рН		6.5-8.5
Phosphorus (Total)	mg/L		0.3
Total Suspended Solids	mg/L		50

Table 36 EPA Identification Point 1- Water pollution limits

Stormwater samples are collected by trained Borg personnel and are analysed by NATA certified laboratories. Full results for the 2020/21 reporting period are provided in Appendix C Surface Water Monitoring Data. Table 37 provides a summary of Borg Panels annual average water monitoring results for discharge from EPA Point 1 and Table 38 for EPA Point 28 during the reporting period and for the previous two years (Point 1 only, no data for Point 28). This shows that for the 2020/21 reporting period, the annual average for all pollutants were below the concentration limit set in EPL 3035.

Pollutant	Units of Measure	2018/19	2019/20	2020/21
Aldrin	µg/L	0	0	0
Biochemical Oxygen Demand	mg/L	15.1	8.2	3.37
Colour	Hazen	120.1	39.2	42.65
Dieldrin	µg/L	0	0	0
Methylene Blue Active Substances	mg/L	0.3	0.1	0.10
Nitrogen (Total)	mg/L	6.3	3.7	1.3
Oil and Grease	mg/L	7.5	5.1	5.23
рН	рН	7.6	7.6	7.62
Phosphorus (Total)	mg/L	0.1	0.1	0.06
Total Suspended Solids	mg/L	31.3	28.9	35.91

Pollutant	Units of Measure	2020/21	
Aldrin	µg/L	0	
Biochemical Oxygen Demand	mg/L	7.7	
Colour	Hazen	68.5	
Dieldrin	µg/L	0	
Methylene Blue Active Substances	mg/L	0.11	
Nitrogen (Total)	mg/L	8.42	
Oil and Grease	mg/L	5.8	
рН	рН	7.72	
Phosphorus (Total)	mg/L	0.09	
Total Suspended Solids	mg/L	23.5	

Table 38 Annual Average Water Quality Monitoring Results EPA Point 28

Forty-three samples (sample events) were collected and analysed at Point 1 and ten samples collected and analysed at Point 28 during discharge in the 2020/21 reporting period.

Six events at Point 1 and five events at Point 28 returned results where water pollution limits noted in Table 36 were exceeded. The EPA and DPIE were notified of all exceedances (see Appendix I Water Quality Exceedances Notification). Appendix C displays the exceedance information for each event including sample date, pollutant and result.

The exceedances experienced during this period were investigated in an attempt to determine potential pollutant sources that may have contributed to the exceedance. This included upstream inspections (Structaflor and Highland Pine Products stormwater infrastructure), assessment of site activities and ERSED controls, and review of rainfall data from the site weather station.

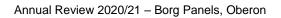
As discussed above in section 4.2.1 Rainfall Data, the site meteorological station recorded 1008mm of rainfall for the reporting period which was 172.3mm above the annual mean rainfall of 835.7mm for the Oberon region. This excess rainfall combined with the significant construction activities that occurred during this reporting period likely contributed to a number of the water quality discharge exceedances discussed below.

4.4.1 EPL 3035 Identification Point 1

Water quality discharge limit for Total Suspended Solids (TSS) was exceeded on 15th June 2020 with result being 78mg/l. The two weeks preceding this the sample event were relatively dry. A significant rain event (13.4mm) occurred the day before sampling which likely mobilised sediments in the swale system. Sample event undertaken one week later on 25th June did not show exceedance for TSS.

Water quality discharge limit for Biological Oxygen Demand (BOD) was exceeded for sample event undertaken on 23rd September 2020 were results showed BOD at 32mg/l. There were no unusual site conditions recorded during this sample event. All other pollutant levels were within the concentration limits set in EPL 3035.

Water quality discharge limit for pH was exceeded for sample event undertaken on 21st October 2020. Results showed pH at 8.86. No other exceedances were reported for this event. No unusual site conditions were recorded for this event.


On 20th January 2021 water quality discharge limit for pH was exceeded with result showing pH at 8.63. All other pollutants were well below discharge concentration limits. No unusual site conditions were identified.

Results for stormwater sample event undertaken on 24th February 2021 show TSS at 656mg/l. A site investigation commenced with the Environmental Manager coordinating with the site WHSE Coordinator and Construction Coordinator to determine causal factors. Construction were undertaking minor earthwork activities at the northern swale for the stormwater system when an unexpected rain event occurred. This was a significant rain event in that it was greater than 10mm. A sizeable area was required to be exposed for this portion of work, staging was not an option however this increased the potential for sediment laden runoff. Rock check dams and sediment fence had been installed to manage the work area. The Construction Coordinator advised that he checks the weather forecast daily which assists in determining the days/weeks scope of works though as stated, this was an unexpected event. An attempt was made by the WHSE Coordinator to inspect downstream of the site discharge point (i.e. Kings Stockyard Creek off Hazelgrove Road) however the vegetation was too thick to access to visually inspect the Creek. Works to this section of site were escalated by the Construction Coordinator to 'close up' this area in addition to the scheduling of spray grass application to the western and northern swales. In this reporting period, there have been no other TSS exceedances at this EPL Point 1.

On 16th March 2021 water quality discharge limit for Oil & Grease (O&G) was exceeded with result showing O&G at 15mg/l. During the two days preceding the sample event, the site weather station recorded two significant rain events totalling 45.2mm which likely contributed to this exceedance given the volume of runoff into the site swales from both on-site and off-site surfaces. For the remainder of this reporting period, there were no other exceedances of O&G at this monitoring location.

4.4.2 EPL 3035 Identification Point 28

At EPL discharge point 28 there were three occurrences where water quality discharge limit for Total Nitrogen (TN) was exceeded. These occurred on 10th, 17th and 24th February 2021 with results being 11.9mg/l, 15.8mg/l and 15.5mg/l respectively. For the minor exceedance on 10th February, no unusual site conditions were identified which could have contributed to this exceedance. When results for the 17th February again showed an exceedance for this same pollutant, the WHSE Coordinator conducted an inspection of the whole of site and identified an amount of wood material which had escaped the debarker/chipper building and surrounds. This organic matter could have contributed to this exceedance. Supporting this assumption is the result for True Colour being 70PCU. While not an exceedance of EPL 3035 50 or 100 percentile limit, it may show a correlation between organic matter and the TN result. Upon receiving results for sample event undertaken on 24th February, a site investigation commenced in an attempt to determine if site contributors other than organic material potentially contributed to the exceedance. It was identified that at the UWR stockpile area adjacent the materials handling building, an amount of particleboard chip was stockpiled on the pad outside of the building and possibly leaching resin during rain events which could be the cause of the TN results. Upon this identification a site instruction was given that all particleboard chip be stored inside the building. Other than organic matter, no other possible contributors were identified. Since that time there have been no further exceedances of TN in stormwater sample results.

On 16th March 2021 a minor exceedance for Oil & Grease was reported (11mg/l). No unusual site conditions were recorded for this sample event. No other exceedances were reported for this event. There was a minor exceedance for Total Suspended Solids (54mg/l) from water sample event undertaken on 24th March 2021. No unusual site conditions were recorded for this sample event. No other exceedances were reported for this event.

4.5 Groundwater

In accordance with EPL 3035, Borg Panels monitor four groundwater bores on site. The locations of groundwater monitoring bores are listed in Table 39 and shown on Figure 7.

EPA Identification No.	Location Description
14	North western boundary of site
15	East of stormwater treatment pond
16	East of Woodchem
24	Adjacent northern swale

Table 39 Location of Groundwater Monitoring Bores

Figure 7 Groundwater Monitoring Locations

Samples were collected by an appropriately qualified third-party specialist and analysed by NATA certified laboratories. This work is carried out in accordance with statutory requirements and relevant standards. Monitoring equipment is maintained in accordance with the manufacturer's specifications by qualified specialists.

Tables 40-43 present results for EPA Identification Points 14, 15, 16 and 24 during the reporting period and compares them with the previous two years data. There are no concentration limits for groundwater set in EPL 3035. Laboratory analysis report provided by ALS Environmental is attached as Appendix D.

Pollutant	Unit of Measure	Frequency	2018/19	2019/20	2020/21
Aldrin	µg/L	Yearly	<0.5	-	<0.5
Ammonia as N	mg/L	Yearly	0.02	-	0.02
Chemical Oxygen Demand	mg/L	Yearly	<10	-	25
Electrical Conductivity	µS/cm	Yearly	377	-	220
Dieldrin	µg/L	Yearly	<0.5	-	<0.5
Formaldehyde	mg/L	Yearly	<0.1	-	0.2
рН	pH Units	Yearly	6.8	-	6.8
Total Dissolved Solids	mg/L	Yearly	180	-	210
Total Organic Carbon	mg/L	Yearly	<1	-	3
Total Petroleum Hydrocarbons	µg/L	Yearly	<50	-	<50
Total Suspended Solids	mg/L	Yearly	13	-	606
Water Height	m	Yearly	6.7	-	1.09

Table 40 Groundwater Monitoring Results EPA Identification Point 14 (GW05)*

Table 41 Groundwater Monitoring Results EPA Identification Point 15 (GW02)

Pollutant	Unit of Measure	Frequency	2018/19	2019/20	2020/21
Aldrin	µg/L	Yearly	<0.5	<0.5	<0.5
Ammonia as N	mg/L	Yearly	0.03	0.02	<0.01
Chemical Oxygen Demand	mg/L	Yearly	15	<10	26
Electrical Conductivity	μS/cm	Yearly	1032	918	1040
Dieldrin	µg/L	Yearly	<0.5	<0.5	<0.5
Formaldehyde	mg/L	Yearly	<0.1	0.1	0.1
рН	pH Units	Yearly	6.2	6.6	7.1
Total Dissolved Solids	mg/L	Yearly	500	483	690
Total Organic Carbon	mg/L	Yearly	4	4	3
Total Petroleum Hydrocarbons	µg/L	Yearly	<50	<50	<50
Total Suspended Solids	mg/L	Yearly	46	40	45
Water Height	m	Yearly	2.5	-	0.98

At EPA Point 14 (Table 40), an increase in Chemical Oxygen Demand and Total Suspended Solids is evident from the 2018/19 review period. As this monitoring well had only been recently reinstated/developed prior to the sample event, there may have been excess sediment deposited in the well during development works. The data from the 2021/22

monitoring event will be reviewed to determine if the level of TSS has returned to usual low levels. All other analytes are similar to the 2018/19 period.

Results for EPA Point 15 (Table 41) show an increase notably in Chemical Oxygen Demand, Electrical Conductivity and Total Dissolved Solids between the 2019/20 and 2020/21 periods though the 2020/21 and 2018/19 results appear more similar. All other analytes remained relatively constant with the 2019/20 records.

Pollutant	Unit of Measure	Frequency	2018/19	2019/20	2020/21
Aldrin	µg/L	Yearly	<0.5	<0.5	<0.5
Ammonia as N	mg/L	Yearly	0.04	0.03	0
Chemical Oxygen Demand	mg/L	Yearly	<10	11	26
Electrical Conductivity	µS/cm	Yearly	189	228	257
Dieldrin	µg/L	Yearly	<0.5	<0.5	<0.5
Formaldehyde	mg/L	Yearly	<0.1	0.1	0.3
рН	pH Units	Yearly	6.6	6.2	6.3
Total Dissolved Solids	mg/L	Yearly	98	127	200
Total Organic Carbon	mg/L	Yearly	2	5	6
Total Petroleum Hydrocarbons	µg/L	Yearly	<50	<50	<50
Total Suspended Solids	mg/L	Yearly	73	52	173
Water Height	m	Yearly	0.9	0.74	0.86

Table 42 Groundwater Monitoring Results EPA Identification Points 16 (GW01)

Table 43 Groundwater Monitoring Results EPA Identification Points 24 (GW26)

Pollutant	Unit of Measure	Frequency	2018/19	2019/20	2020/21
Aldrin	µg/L	Yearly	<0.5	<0.5	<0.5
Ammonia as N	mg/L	Yearly	0.03	<0.01	<0.01
Chemical Oxygen Demand	mg/L	Yearly	<10	<10	182
Electrical Conductivity	µS/cm	Yearly	244	486	421
Dieldrin	µg/L	Yearly	<0.5	<0.5	<0.5
Formaldehyde	mg/L	Yearly	<0.1	<0.1	0.1
рН	pH Units	Yearly	6.2	6.8	7.3
Total Dissolved Solids	mg/L	Yearly	142	283	264
Total Organic Carbon	mg/L	Yearly	1	1	148
Total Petroleum Hydrocarbons	µg/L	Yearly	<50	<50	<50
Total Suspended Solids	mg/L	Yearly	24	6	142
Water Height	m	Yearly	1.5	1.52	5.89

EPA Point 16 (Table 42) also shows as increase in Chemical Oxygen Demand, Electrical Conductivity, Total Dissolved Solids and Total Suspended Solids when compared with the previous two periods. There is a decrease in Ammonia when compared with the previous two periods and the remaining analytes appear similar to the previous reporting period.

At EPA Point 24 (Table 43) there is a significant increase in Chemical Oxygen Demand, Total Organic Carbon and Total Suspended Solids. A correlation between these three analytes can

be made and it can be assumed these are organic in nature and probably caused by insufficient purging of this bore.

4.6 Noise

In accordance with EPL 3035 and site management plans, Borg Panels monitor noise emissions from the facility. Noise from the premises must not exceed the limits noted in Table 44. In accordance with Development Consent SSD 7016 all construction activities related to the development must also comply with the limits in Table 44. *Table 44 Noise Limits dB(A)*

Location		DayEveningLAeg(15 minute)LAeg(15 minute)		
				LAeq(15 minute)
All sens	sitive receivers	55	50	45
Note:	<u>Day</u> – The period from 7:00ar Sundays and Public Holidays <u>Evening</u> – The period from 6:0 <u>Night</u> – The period from 10:00 Sundays and Public Holidays L _{Aeq} means the equivalent cor of noise levels occurring over	00pm to 10:00pm 0pm to 7:00am on Mond ntinuous noise level – th	ay to Saturday, and 10:0	00pm to 8:00am on

These noise limits apply under all meteorological conditions except for the following:

- a) Wind speeds greater than 3 meters/second at 10 metres above ground level; or
- b) Stability category F temperature inversion conditions and wind speeds greater than 2 metres/second at 10 metres above ground level; or
- c) Stability category G temperature inversion conditions.

Data recorded by the site meteorological station identified as EPA Identification Point 26 is used to determine meteorological conditions. Temperature inversion conditions (stability category) are to be determined by the sigma-thetas method referred to in Fact Sheet D in the *Noise policy for Industry* EPA 2017.

4.6.1 Operational Noise

EPL 3035 stipulates that noise monitoring to determine compliance must be carried out at least once annually during the day, evening and night time hours specified in Table 44. Noise monitoring must be undertaken in accordance with *Australian Standard AS 2659.1 (1998): Guide to use of sound measuring equipment – portable sound level meters*, and the compliance monitoring guidance provided in the NSW *Noise Policy for Industry* (EPA 2017).

During the 2020/21 reporting period, Global Acoustics were engaged to conduct attended noise monitoring and provide an *Annual Noise Monitoring Report* for operational noise generated by Borg Panels facility. The noise monitoring event was conducted at four sensitive receiver locations as shown in Figure 8 and was undertaken on 24th June 2020. Table 45 presents results of the attended annual noise monitoring event.

Figure 8 Borg Panels noise monitoring locations

Table 45 Attended Noise Monitoring LAeq (15 minute)

Location	Start Date and time	Wind Speed m/s	Stability Class	Criteri on dB	Criterion Applies ^{2,} 3	Borg LAeq 15 min dB⁴	Exceedan ce ^{5,6}
NM1	24/06/2020 15:02	3.6	D	55	No	46	NA
NM2	24/06/2020 15:27	3.0	D	55	Yes	46	Nil
NM3	24/06/2020 16:14	2.7	D	55	No	42	NA
NM4	24/06/2020 14:38	3.0	С	55	Yes	38	Nil
NM1	24/06/2020 20:28	2.2	E	50	Yes	42	Nil
NM2	24/06/2020 20:49	2.2	E	50	Yes	38	Nil
NM3	24/06/2020 19:45	2.7	D	50	Yes	37	Nil
NM4	24/06/2020 20:07	2.7	D	50	Yes	31	Nil
NM1	24/06/2020 22:49	2.9	D	45	Yes	43	Nil
NM2	24/06/2020 23:14	2.9	D	45	Yes	<30	Nil

NM3	24/06/2020 22:01	3.2	D	45	No	39	NA
NM4	24/06/2020 22:25	2.8	E	45	Yes	32	Nil

NA = Not Applicable means atmospheric conditions outside conditions specified in Development.

NM = Not Measurable means some noise from the source of interest was audible at low levels but could not be quantified. IA = Inaudible means there was no noise from the source of interest audible at the monitoring location.

1. Atmospheric data is sourced from Borg weather station in Oberon;

2. In accordance with EPL and PA, the noise criteria are to apply under all meteorological conditions except the following:

- Wind speeds greater than 3 m/s at 10 metres above ground level; or

- Stability class F temperature inversion conditions, and wind speeds greater than 2 m/s at 10 metres above ground level; or - Stability class G temperature inversion conditions.

3. Criterion may or may not apply due to rounding of meteorological data values;

4. Estimated or measured LAeg, 15 minute attributed to the Borg;

5. Bold results in red indicate exceedance of criteria (if applicable); and

6. NA in exceedance column means atmospheric conditions outside conditions specified in development consent and so criterion is not applicable

The attended noise monitoring conducted by Global Acoustics recorded no exceedance of limits identified in Table 44. All measurements were undertaken as per the Noise policy for Industry EPA 2017. The report prepared by Global Acoustics for the annual noise monitoring event is attached to this document as Appendix E.

4.6.2 Construction Noise

Borg Panels Construction Noise Management Plan (CNMP) includes for an attended monitoring regime of one event per guarter. Quarterly noise monitoring is not a compliance requirement under EPL 3035 however it is included as a commitment in Borg Panels Construction Noise Management Plan and therefore, a requirement of SSD 7016 condition C3.

Attended monitoring locations are shown in Figure 8. If any exceedances are identified, additional mitigation measures are implemented, and follow-up monitoring undertaken within one week of the exceedance to determine the effectiveness of the additional controls. Global Acoustics conducted the construction noise monitoring for this review period. Tables 46 to 49 show monitoring results for guarterly noise monitoring events. All reference notes are included below Table 49.

Location	Start Date and time	Wind Speed m/s	Stability Class	Criterion dB	Criterion Applies ¹	Borg LAeq(15 min)²	Exceedance ^{3,} 4
NM1	24/06/2020 15:02	3.6	D	55	No	46	NA
NM2	24/06/2020 15:27	3.0	D	55	Yes	46	Nil
NM3	24/06/2020 16:14	2.7	D	55	No	42	NA
NM4	24/06/2020 14:38	3.0	С	55	Yes	38	Nil

Table 46 Construction Noise Quarter 2

Table 47 Construction Noise Quarter 3

Location	Start Date and time	Wind Speed m/s	Stability Class	Criterion dB	Criterion Applies ¹	Borg LAeq(15 min) ²)	Exceedanc e ^{3,4}
NM1	28/09/2020 09:57	1.4	A	55	Yes	44	Nil
NM2	28/09/2020 10:39	1.8	A	55	Yes	NM	Nil
NM3	28/09/2020 09:08	1.1	A	55	Yes	31	Nil
NM4	28/09/2020 09:32	1.1	A	55	Yes	35	Nil

Table 48 Construction Noise Quarter 4

Location	Start Date and time	Wind Speed m/s	Stability Class	Criterion dB	Criterion Applies ¹	Borg LAeq(15 min) ²	Exceedanc e ^{3,4}
NM1	13/01/2021 14:56	3.7	A	55	No	46	NA
NM2	13/01/2021 15:19	3.5	В	55	No	NM	NA
NM3	13/01/2021 14:07	3.2	A	55	No	<25	NA
NM4	13/01/2021 14:33	4.0	В	55	No	36	NA

Table 49 Construction Noise Quarter 1

Location	Start Date and time	Wind Speed m/s	Stability Class	Criterion dB	Criterion Applies ¹	Borg LAeq(15 min) ²	Exceedanc e ^{3,4}
NM1	03/03/2021 14:28	2.1	A	55	Yes	43	Nil
NM2	03/03/2021 14:48	2.3	A	55	Yes	IA	Nil
NM3	03/03/2021 13:45	1.6	A	55	Yes	33	Nil
NM4	03/03/2021 14:09	1.6	A	55	Yes	36	Nil

NA = Not Applicable means atmospheric conditions outside conditions specified in Development Consent and so criterion is not applicable.

NM = Not Measurable means some noise from the source of interest was audible at low levels but could not be quantified. IA = Inaudible, there was no noise from the source of interest audible at the monitoring location.

1. Noise criteria are to apply under all meteorological conditions except the following:

- Wind speeds greater than 3 m/s at 10 metres above ground level; or

- Stability class F temperature inversion conditions, and wind speeds greater than 2 m/s at 10 metres above ground level; or - Stability class G temperature inversion conditions.

Stability class G temperature inversion conditions.
 Site-only LAeq, 15minute attributed to Borg, including modifying factors if applicable;

3. Bold results in red indicate exceedance of criteria (if applicable); and

4. NA in exceedance column means atmospheric conditions outside conditions specified and criterion is not applicable.

No exceedances of EPL 3035 noise limits were recorded during these monitoring events. Reports provided by Global Acoustics for each event are attached to this document as Appendix F.

5 Community Relations

5.1 Environmental Complaints

Eight community complaints were received during the 2020/21 reporting period. Site investigations were conducted by the WHSE Coordinator which included review of plant operational data. Discussions were had with Area Managers/Supervisors regarding site activities to determine if the facility was operating within approved conditions as specified in SSD 7016 and EPL 3035 at the time of the complaints.

An anonymous complaint was received by the EPA alleging continuous emission of smoke from the site over a period of one week. The EPA sought opinion from a third party within Oberon and they stated that there seemed to be some issue on 9th June 2020. An investigation revealed that one of the sites furnaces stopped for a short period of time on 9th June for maintenance works. Upon start up, some smoke is generated and is reasonable for this activity. This response was provided to the EPA who advised that they would close this complaint in their system. No further action was required.

A complaint was received from a resident regarding the condition of the cycle path that runs parallel to the site at Lowes Mount Road. It was necessary to deviate this path near Gate 6 to allow for construction activities to occur. Gravel was temporarily placed in lieu of bitumen for a period of approximately 1 week. The WHSE Coordinator contacted the resident advising that the path would be reinstated by the following week. No further correspondence was received from the resident.

Three complaints were related to noise. Two of these were related to construction activities where reversing alarm beepers could be heard by the resident. Site investigation undertaken by the Construction Manager and WHS Coordinator found items of plant that had not had the reversing alarm beepers changed out for the non-tonal squawkers. In both instances, this was rectified immediately with those items of plant removed from service, taken to the site workshop where the beepers were replaced with the squawkers. The remaining complaint was investigated and found valid as a section of the roof of the chipper building had been removed and was awaiting replacement which occurred the next day. This was communicated to the complainant. No further action was required, no further complaint was made.

The EPA received a 'mixed' complaint' from a resident regarding noise, odour and smoke emission from the facility stacks. The Environmental Manager followed up with the Facility Manager and Production Manager and was able to determine that there was no evidence of any breach of operating conditions to support this complaint. The EPA did not request any action to be taken by Borg.

One traffic complaint was received where a member of the public informed Borg that a company truck had pulled out in front of their car. The truck was able to be identified and the Logistics Manager counselled the driver.

One complainant phoned the WHSE Coordinator to complain about soot deposits on their car. The WHSE Coordinator and Log Yard Manager attended to the complainant's house to inspect the car and found black marks which more resembled tar stains. The WHSE Coordinator explained to the complainant that if the deposits had come from Borg facility it would more likely be a dusty, wood deposit which would be removed easily, and the resident agreed. No further action was required.

For each complaint received, Borg provided a response to the complainant in a timely manner. With respect to noise complaints, regardless of our demonstration of compliance with noise

limits via compliance noise monitoring events, Borg Panels will continue to undertake ad hoc attended and unattended noise monitoring where necessary to ensure nil noise nuisance to local residents from site activities.

A summary of complaints received during the reporting period is provided in Appendix G.

5.2 Community Liaison

5.2.1 Community Consultative Committee (CCC)

Borg Panels has an established joint Community Consultative Committee (CCC) that meets nominally quarterly to discuss environmental and operational aspects of the facility, and the greater Oberon Timber Complex (OTC). The CCC meetings provide a forum to discuss and address general construction and operational impacts, and mitigation measures for the Borg Panels facility. The CCC meetings also allow for feedback from the local community to Borg Panels and the OTC in relation to environmental performance.

A CCC meeting was held on 24th June 2020 though no community members were in attendance. No minutes were taken. Meetings were planned between September 2020 and January 2021 however were cancelled due to the coronavirus pandemic. A meeting was scheduled for 31st March 2021 though was delayed to 14th April 2021. See Appendix H for meeting minutes.

The next meeting is planned for 29th June 2021 and will be reported in the next Annual Review.

5.2.3 Opportunities for Information Exchange

Borg established the following avenues to record inquiries and complaints related to construction and operational activities:

- A 24-hour free call community liaison line (1800 802 795)
- Postal address for written complaints (Borg Panels, Private Mail Bag 1, Oberon NSW 2787)
- Email address for electronic complaints (<u>oberon_site@borgs.com.au</u>)

The telephone number, postal and email address are displayed on a sign at the entrance to Borg Panels in a position that is clearly visible to the public. This information is also distributed to the local community and is included in public information communications which may include Borg Panels website, local area advertisements, letterbox notifications and project fact sheets.

6 Independent Audit

Development Consent SSD 7016 condition C15 sets out requirements for independent environmental audits of the Development. Borg Panels commissioned Umwelt (Australia) Pty Limited to conduct an independent audit of the Borg Panels site for operations and construction for audit period 29 May 2017 to 30 June 2018.

Umwelt concluded that the Development was undertaken generally in accordance with SSD 7016, the EIS and RTS, development layout plans and drawings, management and mitigation measures, and documents and drawings of the Existing Development.

Eleven non-compliances were identified in this audit. These non-compliances have been closed out and were included in the previous reporting period Annual Review and therefore not repeated in this Review.

In accordance with SSD 7016 condition C15 the next independent audit is scheduled for 2021. Environmental consultants Molino Stewart have been engaged by Borg to undertake this audit and were endorsed by DPIE on 14th April 2021. The findings of this audit will be included in the 2021/22 Annual Review.

7 Environmental Incidents & Non-compliances

Environmental incidents are managed through the Borg Panels Pollution Incident Response Management Plan (PIRMP) and are logged in DataStation, Borg's incident management system. Each incident report details the issue, the corrective and preventative actions taken, and the responsibilities and timing for completion of the actions. The report also includes any additional comments relevant to the incident and the completion date of corrective actions.

7.1 Incidents

A pollution incident that requires notification is defined in section 147 of the Protection of the Environment Operations Act 1997 as:

- (a) Harm to the environment is material if:
 - i. It involves actual of potential harm to the health or safety of human beings or the ecosystems that is not trivial, or
 - ii. If results in actual or potential loss or property damage of an amount, or amounts in aggregate, exceeding \$10,000 (or such other amount as is prescribed by the regulations), and
- (b) Loss includes the reasonable costs and expenses that would be incurred in taking all reasonable and practicable measures to prevent, mitigate or make good harm to the environment.

During this reporting period, there were no reportable environmental pollution incidents at the Borg Panels facility.

7.2 Non-conformances

Environmental non-conformances related to surface water have been discussed in Section 4.4 of this Review and therefore have not been repeated in this section.

There were no other non-conformances during this review period.

8 Activities Proposed for the next Annual Review Period

Borg Panels will endeavour to carry out the activities listed in Table 50 during the 2021/22 reporting period to assist with improving the environmental performance of the existing development and the project.

Table 50 Proposed Activities for 2021/22 Reporting Period

 Activities Proposed in 2020/21 Reporting Period

 Ongoing implementation of Environmental Management Plans for the existing development and the project.

 Carry out independent environmental audit as per condition C15

 Complete verification studies required for SSD 7016 including modifications

Complete reporting requirements related to the commissioning of particleboard plant

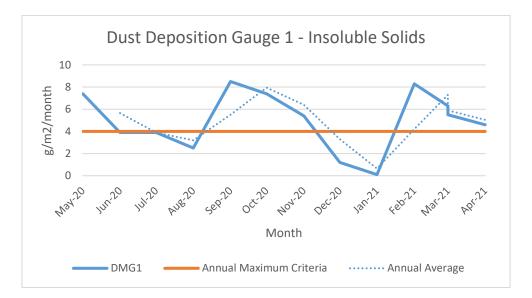
Continue with implementation of various management and mitigation measures as detailed in the development consent, including additional items provided in SSD 7016 MOD 1, MOD 2 and MOD 3

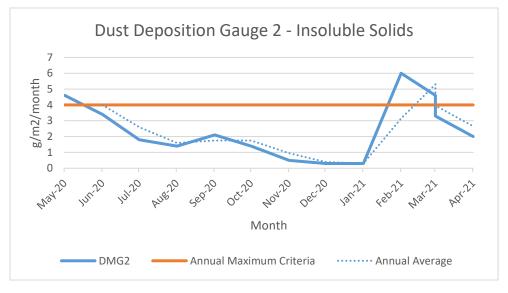
Complete commissioning of the gas turbine (MOD 2)

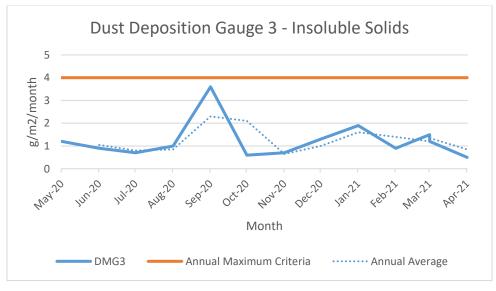
Complete construction of sorting tower for recycled wood (MOD 3)

Undertake required environmental monitoring associated with the newly installed gas turbine

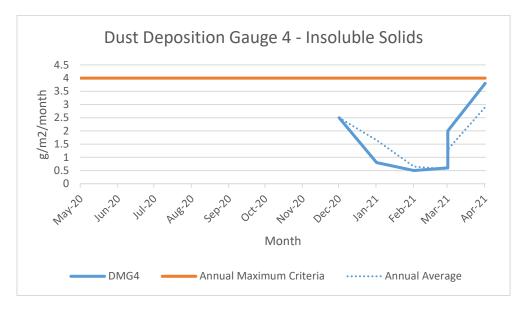
Undertake rehabilitation works to areas disturbed by construction activities

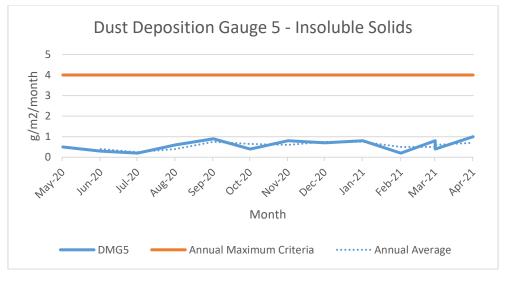


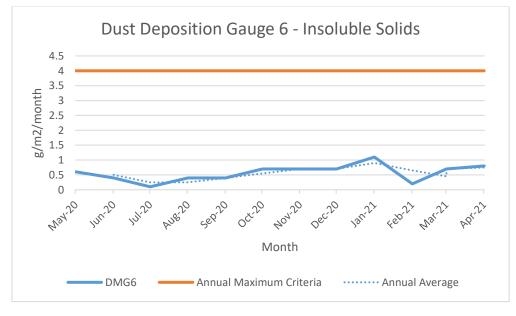

APPENDICIES



Appendix A – Depositional Dust Monitoring Data







Appendix B – Air Quality Monitoring Report

REPORT NUMBER R010598

Emission Testing Report Borg Manufacturing, Oberon Plant

www.ektimo.com.au

Document Information

Template Version; 240920

Client Name:	Borg Manufacturing
Report Number:	R010598
Date of Issue:	23 April 2021
Attention:	Jacqueline Blomberg
Address:	Lowes Mount Rd OBERON NSW 2787
Testing Laboratory:	Ektimo Pty Ltd, ABN 86 600 381 413

Report Authorisation

Aaron Davis Ektimo Signatory

Accredited for compliance with ISO/IEC 17025 - Testing. NATA is a signatory to the ILAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

This document is confidential and is prepared for the exclusive use of Borg Manufacturing and those granted permission by Borg Manufacturing. The report shall not be reproduced except in full.

Please note that only numerical results pertaining to measurements conducted directly by Ektimo are covered by Ektimo's terms of NATA accreditation. This does not include comments, conclusions or recommendations based upon the results. Refer to 'Test Methods' for full details of testing covered by NATA accreditation.

Table of Contents

1	Executive Summary	
1.1	Background	4
1.2	Project Objectives	4
1.3	Licence Comparison	6
1.4	Proposed Licence Amendment	6
1.5	Results Summary	7
2	Results	8
2.1	EPA 4 – DC1 Baghouse	8
2.2	EPA 5 – DC2 Baghouse	9
2.3	EPA 7 – Conti 2 Stage 1 Dryer Cyclone 1 (West)	10
2.4	EPA 8 – Conti 2 Stage 1 Dryer Cyclone 2 (East)	16
2.5	EPA 9 – Conti 1 Dryer Cyclone 1 (South)	22
2.6	EPA 10 – Conti 1 Dryer Cyclone 2 (North)	24
2.7	EPA 12 – Conti 1 Press Vent 1	26
2.8	EPA 12 – Conti 1 Press Vent 2	28
2.9	EPA 12 – Conti 1 Press Vent 3	
2.10	EPA 12 – Conti 1 Press Vent 4	
2.11	EPA 27 - Combined Conti 2 Press Vent Stack	34
2.12	EPA 29 – Forming Line Baghouse	
2.13	EPA 30 – Form Station Baghouse	
2.14	EPA 31 – Particle Board Press Extraction System	40
2.15	EPA 32 – WESP	42
2.16	EPA 33 – Cogeneration Plant 1 Stack	44
2.17	EPA 34 – Cogeneration Plant 2 Stack	45
3	Plant Operating Conditions	
4	Test Methods	46
5	Quality Assurance/Quality Control Information	
6	Definitions	
7	Appendix 1: Site Locations	

1 EXECUTIVE SUMMARY

1.1 Background

Ektimo was engaged by Borg Manufacturing to perform emission testing at their Oberon plant. Testing was carried out in accordance with Environment Protection Licence 3035.

1.2 Project Objectives

The objectives of the project were to conduct a monitoring programme to quantify emissions from 14 discharge points to determine compliance with Borg Manufacturing's Environment Protection Licence.

Monitoring was performed as follows:

Location	Test Date	Test Parameters*
EPA 4 - DC1 Baghouse	26 February 2021	Total solid particles
EPA 5 - DC2 Baghouse		Formaldehyde
EPA 7 - Conti 2 Dryer Cyclone 1	24 February 2021	Metals (type 1 & 2 substances)
(West)		Hydrogen chloride, chlorine, total fluoride
		Formaldehyde
		Volatile organic compounds (VOC's)
		Nitrogen oxides, oxygen, carbon dioxide
		Smoke
	25 February 2021	Total solid particles, fine particulate matter (PM10)
		Sulfuric acid mist & sulfur trioxide, sulfur dioxide
EPA 8 - Conti 2 Dryer Cyclone 2	23 February 2021	Total solid particles, fine particulate matter (PM10)
(East)		Sulfuric acid mist & sulfur trioxide, sulfur dioxide
		Metals (type 1 & 2 substances)
		Hydrogen chloride, chlorine, total fluoride
		Formaldehyde
		Volatile organic compounds (VOC's)
		Nitrogen oxides, oxygen, carbon dioxide
		Smoke
EPA 9 - Conti 1 Dryer Cyclone 1	3 March 2021	Total solid particles, fine particulate matter (PM_{10})
(South)		Formaldehyde
EPA 10 - Conti 1 Dryer Cyclone 2		Smoke
(North)		Nitrogen oxides, oxygen, carbon dioxide
EPA 12 – Conti 1 Press Vents	5 March 2021	Total solid particles, fine particulate matter (PM10)
(1, 2, 3 & 4)		Formaldehyde
		Nitrogen oxides, oxygen, carbon dioxide

Location	Test Date	Test Parameters*
EPA 27 – Combined Conti 2 Press Vent Stack	3 March 2021	Total solid particles, fine particulate matter (PM10) Formaldehyde Nitrogen oxides, oxygen, carbon dioxide
EPA 29 - Forming Line Baghouse EPA 30 - Form Station Baghouse	2 March 2021	Total solid particles, fine particulate matter (PM ₁₀) Formaldehyde Smoke
EPA 31 – Particle Board Press Extraction System		Nitrogen oxides, oxygen, carbon dioxide
EPA 32 - WESP	2 March 2021	Total solid particles Formaldehyde Smoke Nitrogen oxides, oxygen, carbon dioxide
EPA 33 Cogeneration Plant 1 Stack EPA 34 Cogeneration Plant 2 Stack	4 March 2021	Volatile organic compounds (VOC's) Nitrogen oxides, oxygen, carbon dioxide

* Flow rate, velocity, temperature and moisture were also determined.

All results are reported on a dry basis at STP.

Plant operating conditions have been noted in the report.

1.3 Licence Comparison

The following licence comparison table shows that all analytes highlighted in green are within the licence limit set by the NSW EPA as per licence 3035 (last amended on 4 September 2019).

EPA No.	Location Description	Pollutant	Units	Licence limit	Detected values
					Feb-Mar 2021
7	Conti 2 Stage 1 Dryer	Total Solid Particles	mg/m ³	200	79
/	Cyclone 1 (West)	Formaldehyde	Units Feb-Mar 2021 s mg/m³ 200 79 mg/m³ 5 1.6 s mg/m³ 200 68 mg/m³ 5 3 s mg/m³ 5 3 s mg/m³ 5 4.8	1.6	
8	Conti 2 Stage 1 Dryer	Total Solid Particles	mg/m ³	200	68
0	Cyclone 2 (East)	Formaldehyde	mg/m ³	5	3
9	Conti 1 Dryer Cyclone 1	Total Solid Particles	mg/m ³	200	38
9	(South)	Formaldehyde	mg/m ³	5	4.8
10	Conti 1 Dryer Cyclone 2	Total Solid Particles	mg/m ³	200	41
10	(North)	Formaldehyde	mg/m ³	5	4.7

Please note that the measurement uncertainty associated with the test results was not considered when determining whether the results were compliant or non-compliant.

Refer to the Test Methods table for the measurement uncertainties.

1.4 *Proposed Licence Amendment*

As indicated by Borg, licence amendments have been proposed which indicate that EPA 33 and 34 may be subject to the concentration limits set out in the table below.

Results from this stack emission monitoring program indicate that Borg Manufacturing **was** compliant with the proposed emission limits.

EPA No.	Location Description	Pollutant	Units	Proposed Emission Limit	Detected Values 4 March 2021	Detected Values 4 March 2021 5 % Oxygen correction
22	Cogonaration Dant 1 Stack	Nitrogen oxides	mg/m ³	450	230	320
	33 Cogeneration Plant 1 Stac	Total VOCs (as n-propane)	mg/m ³	20	0.57	0.8
34 Cogeneration Plant 2 Stack		Nitrogen oxides	mg/m ³	450	270	390
54	Cogeneration Plant 2 Stack	Total VOCs (as n-propane)	mg/m ³	20	0.11	0.16

1.5 *Results Summary*

The following summary table details results of all analytes tested for locations with no limits stated in NSW EPA licence 3035.

	Location Description	Pollutant	Units	Detected Values February-March 2021
4		Solid particles	mg/m ³	<2
4	DC1 Baghouse	Formaldehyde	mg/m ³	1.5
5	DC2 Raghouse	Solid particles	mg/m ³	<2
5	DC2 Baghouse	Formaldehyde	mg/m ³	2.5
		Sulfur dioxide	mg/m ³	0.21
		Sulfur trioxide and/or sulfurc acid (as SO3)	mg/m ³	0.19
		Total VOCs (as n-propane)	mg/m ³	3.9
7	Conti 2 Stage 1 Dryer Cyclone 1	Nitrogen oxides	mg/m ³	140
,	(West)	Chloride (as HCl)	mg/m ³	<0.02
		Chlorine	mg/m ³	0.0089
		Total Fluoride (as HF)	mg/m ³	<0.02
		Type 1 & 2 Substances (Aggregate)	mg/m ³	≤0.068
		Sulfur dioxide	mg/m ³	<0.02
		Sulfur trioxide and/or sulfurc acid (as SO ₃)	mg/m ³	0.074
		Total VOCs (as n-propane)	mg/m ³	9.7
8	Conti 2 Stage 1 Dryer Cyclone 2	Nitrogen oxides	mg/m ³	210
C	(East)	Chloride (as HCl)	mg/m ³	<0.02
		Chlorine	mg/m ³	0.01
		Total Fluoride (as HF)	mg/m ³	<0.03
		Type 1 & 2 Substances (Aggregate)	mg/m ³	≤0.12
9	Conti 1 Dryer Cyclone 1 (South)	Nitrogen oxides	mg/m ³	260
10	Conti 1 Dryer Cyclone 2 (North)	Nitrogen oxides	mg/m ³	73
		Solid particles	mg/m ³	3.3
	Conti 1 Press Vent 1	Formaldehyde	mg/m ³	5.4
		Nitrogen oxides	mg/m ³	<4
		Solid particles	mg/m ³	7.2
	Conti 1 Press Vent 2	Formaldehyde	mg/m ³	6.5
12		Nitrogen oxides	mg/m ³	<4
12		Solid particles	mg/m ³	19
	Conti 1 Press Vent 3	Formaldehyde	mg/m ³	3.8
		Nitrogen oxides	mg/m ³	<4
		Solid particles	mg/m ³	28
	Conti 1 Press Vent 4	Formaldehyde	mg/m ³	1.2
		Nitrogen oxides	mg/m ³	<4
		Solid particles	mg/m ³	7.6
27	Combined Stack (C2 Press Vents)	Formaldehyde	mg/m ³	1.9
		Nitrogen oxides	mg/m ³	<4
		Solid particles	mg/m ³	<2
29	Forming Line Baghouse	Formaldehyde	mg/m ³	1.7
		Nitrogen oxides	mg/m ³	<4
		Solid particles	mg/m ³	<2
30	Form Station Baghouse	Formaldehyde	mg/m ³	1.5
	-	Nitrogen oxides	mg/m ³	<4
		Solid particles	mg/m ³	46
31	Particle Board Press Extraction	Formaldehyde	mg/m ³	4.6
	System	Nitrogen oxides	mg/m ³	<4
		Solid particles	mg/m ³	30
32	WESP	Formaldehyde	mg/m ³	0.21
32	VV LJF	Nitrogen oxides	mg/m ²	210

NATA

2 RESULTS

2.1 EPA 4 – DC1 Baghouse

Date 26/02/2021	Client	Borg Manufacturing Pty Ltd
Report R010598	Stack ID	EPA 4 - DC1 Baghouse
Licence No. 3035	Location	Oberon
Ektimo Staff Steven Cooper	State	NSW
Process Conditions Plant operating n	ormally	2 112 19
Sampling Plane Details		
Sampling plane dimensions	1280 x 680 mm	
Sampling plane area	0.87 m ²	
Sampling port size, number	4" BSP (x2)	
Access & height of ports	Elevated work platform 10 m	
Duct orientation & shape	Vertical Rectangular	
Downstream disturbance	Exit 1 D	
Upstream disturbance	Bend 3 D	
No. traverses & points sampled	28	
Sample plane compliance to AS4323.1	Compliant but non-ideal	
Commonte		
Comments	lue to the following reasons:	
The sampling plane is deemed to be non-ideal	nstream disturbance but is greater than or e	aual to 1D
	ream disturbance but is greater than or equ	
Line sampling plane is too near to the upst	ream disturbance but is greater than of equ	
Stack Parameters		
Moisture content, %v/v	5.1	
Gas molecular weight, g/g mole	28.5 (wet)	29.0 (dry)
Gas density at STP, kg/m ³	1.27 (wet)	1.29 (dry)
	1.27 (Wet)	1.25 (0.13)
Gas Flow Parameters		
Flow measurement time(s) (hhmm)	0909 & 1028	
Temperature, °C	38	
Temperature, K	311	
Velocity at sampling plane, m/s	9.2	
Volumetric flow rate, actual, m ³ /s	8	
Volumetric flow rate (wet STP), m ³ /s	6.2	
Volumetric flow rate (dry STP), m ³ /s	5.9	
Mass flow rate (wet basis), kg/hour	28000	
Formaldehyde	Re	sults
Sampling ti	ne 092:	1-1021
	Concentration	
	mg/m³	g/min
Formaldehyde	1.5	0.54
Isokinetic Results		sults
Sampling ti	ne 0915	5-1021
	Concentration	
	mg/m³	g/min
Solid Particles	<2	<0.6
Icokinotic Compling Persenators		
Isokinetic Sampling Parameters		
Sampling time, min	64	
Isokinetic rate, %	105	
Velocity difference, %	<1	

2.2 EPA 5 – DC2 Baghouse

Date 26/02/2021		Client	Borg Manufacturing Pty Ltd	
Report R010598		Stack ID	EPA 5 - DC2 Baghouse	
Licence No. 3035		Location	Oberon	
Ektimo Staff Steven Cooper		State	NSW	
Process Conditions Plant operating	normally			2 112 19
Sampling Plane Details				
Sampling plane dimensions		680 mm		
Sampling plane area) m²		
Sampling port size, number	4" BS	5P (x2)		
Access & height of ports	Elevated work platform	10 m		
Duct orientation & shape	Vertical	Rectangular		
Downstream disturbance	Exit	1 D		
Upstream disturbance	Bend	3 D		
No. traverses & points sampled	2	14		
Sample plane compliance to AS4323.1	Compliant b	ut non-ideal		
Comments				
The sampling plane is deemed to be non-idea	I due to the following reasons:			
The sampling plane is too near to the do		ater than or e	qual to 1D	
The sampling plane is too near to the up				
Stack Parameters				
Moisture content, %v/v	1.9			
Gas molecular weight, g/g mole	28.8 (wet)		29.0 (dry)	
Gas density at STP, kg/m ³	1.28 (wet)		1.29 (dry)	
Gas Flow Parameters				
Flow measurement time(s) (hhmm)	1050 & 1220			
Temperature, °C	33			
Temperature, K	306			
Velocity at sampling plane, m/s	13			
Volumetric flow rate, actual, m ³ /s	25			
Volumetric flow rate (wet STP), m ³ /s	20			
Volumetric flow rate (dry STP), m ³ /s	20			
Mass flow rate (wet basis), kg/hour	92000			
·				
Formaldehyde			ults	
Sampling	time	1101	-1201	
		Concentration	Mass Rate	
		mg/m ³	g/min	
Formaldehyde		2.5	2.9	
Isokinetic Results		Por	ults	
	time		-1212	
Sampling	ume	1058	-1212	
		Concentration	Mass Rate	
		mg/m ³	g/min	
Solid Particles		<2	<2	
Isokinotic Sampling Parameters				
Isokinetic Sampling Parameters		70		
Sampling time, min		70 100		
Isokinetic rate, %		100		
Velocity difference, %		-3		

2.3 EPA 7 – Conti 2 Stage 1 Dryer Cyclone 1 (West)

Date	24/02/2021			Client	Borg Manufact	uring Pty Ltd	
Report	R010598			Stack ID	EPA 7 - Conti 2	Stage 1 Dryer Cyc	lone 1 (West)
Licence No.	3035			Location	Oberon		
Ektimo Staff	Steven Cooper & Ed Can			State	NSW		
Process Conditions	Please refer to client rec	ords.					2112.
Sampling Plane Details							
Sampling plane dimensions			2480) mm			
Sampling plane area			4.83	3 m²			
Sampling port size, number			4" BS	P (x2)			
Access & height of ports			Fixed ladder	35 m			
Duct orientation & shape			Vertical	Circular			
Downstream disturbance			Exit	1.5 D			
Upstream disturbance			Junction	0.5 D			
No. traverses & points sampl	led		2	24			
Sample plane compliance to	AS4323.1		Compliant b	out non-ideal			
Comments							
	to the cyclonic flow Por	Manufacturing		annroved meth	od deviation to A	54272 7 to cond.	ict particulate
Please note that in response		s ivianui acturing	IIds a INSW EPA	approved meth	ou deviation to A	34323.2 to condu	ici particulate
matter sampling at this locat	ion.						
The sampling plane is deem	ed to be non-compliant	due to the follow	ving reasons:				
The gas profile has a cyclonic	c component which excee	ds 15°					
The highest to lowest differe	ntial pressure ratio excee	ds 9:1					
The highest to lowest gas vel	ocity ratio exceeds 1.6:1						
The upstream disturbance is	-	ane					
The sampling plane is too nea	ar to the downstream dist	urbance but is g	reater than or e	qual to 1D			
Stack Parameters							
			10				
Moisture content, %v/v			16		20.2 (dm)		
Gas molecular weight, g/g mo	ole		27.4 (wet)		29.2 (dry)		
Gas density at STP, kg/m ³			1.22 (wet)		1.30 (dry)		
Gas Flow Parameters							
Flow measurement time(s) (h	nhmm)		1101 & 1430				
Temperature, °C			57				
Temperature, K			330				
Velocity at sampling plane, m	n/s		12				
Volumetric flow rate, actual,	m³/s		57				
Volumetric flow rate (wet ST	°P), m³/s		41				
Volumetric flow rate (dry STF	P), m³/s		35				
Mass flow rate (wet basis), k	g/hour		180000				
Gas Analyser Results		Aver	age	Min	imum	Maxir	mum
eas maryser nesults	Sampling time	1242 -	-		2 - 1345	1242 -	
	samping time	1242 -	1040	1242	- 1040	1242 -	1040
		Concentration	Mass Rate	Concentration	Mass Rate	Concentration	Mass Rate
Combustion Gases		mg/m³	g/min	mg/m³	g/min	mg/m³	g/min
Nitrogen oxides (as NO ₂)		140	290	110	230	160	340
		Concentration		Concentration		Concentration	
		% v/v		% v/v		% v/v	
				1			

1.9

18.5

1.3

18.1

2.5

18.7

Carbon dioxide

Oxygen

Date	24/02/2021	Client	Borg Manufacturing Pty Ltd
Report	R010598	Stack ID	EPA 7 - Conti 2 Stage 1 Dryer Cyclone 1
			(West)
Licence No.	3035	Location	Oberon
Ektimo Staff	Steven Cooper & Ed Camilleri	State	NSW
Process Conditions	Please refer to client records.		21219
Formaldehyde		Re	sults
	Samplingtime	1312	2-1412
		Concentration mg/m³	Mass Rate g/min
Formaldehyde		1.6	3.4
Isokinetic Results		Re	sults
	Sampling time	1122	2-1425
		Concentration mg/m ³	Mass Rate g/min
Chloride (as HCl)		<0.02	<0.04
Chlorine		0.0089	0.018
Total fluoride (as HF)		<0.02	<0.05
Isokinetic Sampling Param	leters		
Sampling time, min		120	
Isokinetic rate, %		102	
Velocity difference, %		9	

Date	24/02/2021	Client	Borg Manufacturing Pty Ltd
Report	R010598	Stack ID	EPA 7 - Conti 2 Stage 1 Dryer Cyclone 1
			(West)
Licence No.	3035	Location	Oberon
Ektimo Staff	Steven Cooper & Ed Camilleri	State	NSW
Process Conditions	Please refer to client records.		2121
Sampling Plane Det	ails		
Sampling plane dir	mensions	2480 mm	
Sampling plane are	2a	4.83 m²	
Sampling port size,	number	4" BSP (x2)	
Access & height of	ports	Fixed ladder 35 m	
Duct orientation &	shape	Vertical Circular	
Downstream distur	bance	Exit 1.5 D	
Upstream disturba	nce	Junction 0.5 D	
No. traverses & poi	nts sampled	2 24	
Sample plane comp	pliance to AS4323.1	Compliant but non-ide	al
conduct particulate The sampling plane is The gas profile has	matter sampling at this location. s deemed to be non-compliant due to the a cyclonic component which exceeds	following reasons: 15°	A approved method deviation to AS4323.2 to
Please note that in conduct particulate The sampling plane is The gas profile has The highest to lowe The highest to lowe The upstream distu	s matter sampling at this location. s deemed to be non-compliant due to the a cyclonic component which exceeds est differential pressure ratio exceeds est gas velocity ratio exceeds 1.6:1 urbance is <2D from the sampling plan	following reasons: 15° 9:1 e	
Please note that in conduct particulate The sampling plane is The gas profile has The highest to lowe The highest to lowe The upstream distu	a cyclonic component which exceeds est differential pressure ratio exceeds est gas velocity ratio exceeds 1.6:1	following reasons: 15° 9:1 e	
Please note that in conduct particulate The sampling plane is The gas profile has The highest to lowe The highest to lowe The upstream distu The sampling plane Stack Parameters	e matter sampling at this location. s deemed to be non-compliant due to the a cyclonic component which exceeds est differential pressure ratio exceeds est gas velocity ratio exceeds 1.6:1 urbance is <2D from the sampling plan e is too near to the downstream distu	following reasons: 15° 9:1 e rbance but is greater than c	
Please note that in conduct particulate The sampling plane is The gas profile has The highest to lowe The highest to lowe The upstream distu The sampling plane Stack Parameters Moisture content, 9	s matter sampling at this location. s deemed to be non-compliant due to the a cyclonic component which exceeds est differential pressure ratio exceeds est gas velocity ratio exceeds 1.6:1 urbance is <2D from the sampling plan e is too near to the downstream distu	following reasons: 15° 9:1 e rbance but is greater than c	or equal to 1D
Please note that in conduct particulate The sampling plane is The gas profile has The highest to lowe The highest to lowe The upstream distu The sampling plane Stack Parameters Moisture content, 9 Gas molecular weig	s matter sampling at this location. s deemed to be non-compliant due to the a cyclonic component which exceeds est differential pressure ratio exceeds est gas velocity ratio exceeds 1.6:1 urbance is <2D from the sampling plan e is too near to the downstream distu 6v/v ght, g/g mole	following reasons: 15° 9:1 e rbance but is greater than c 16 27.4 (wet)	pr equal to 1D 29.2 (dry)
Please note that in conduct particulate The sampling plane is The gas profile has The highest to lowe The highest to lowe The upstream distu The sampling plane Stack Parameters Moisture content, 9 Gas molecular weig	s matter sampling at this location. s deemed to be non-compliant due to the a cyclonic component which exceeds est differential pressure ratio exceeds est gas velocity ratio exceeds 1.6:1 urbance is <2D from the sampling plan e is too near to the downstream distu 6v/v ght, g/g mole	following reasons: 15° 9:1 e rbance but is greater than c	or equal to 1D
Please note that in conduct particulate The sampling plane is The gas profile has The highest to lowe The highest to lowe The upstream distu The sampling plane Stack Parameters Moisture content, 9 Gas molecular weig Gas density at STP,	e matter sampling at this location. s deemed to be non-compliant due to the a cyclonic component which exceeds est differential pressure ratio exceeds est gas velocity ratio exceeds 1.6:1 urbance is <2D from the sampling plan <u>e is too near to the downstream distu</u> <u>6v/v</u> ght, g/g mole kg/m ³	following reasons: 15° 9:1 e rbance but is greater than c 16 27.4 (wet)	pr equal to 1D 29.2 (dry)
Please note that in conduct particulate The sampling plane is The gas profile has The highest to lowe The highest to lowe The upstream distu The sampling plane Stack Parameters	e matter sampling at this location. s deemed to be non-compliant due to the a cyclonic component which exceeds est differential pressure ratio exceeds est gas velocity ratio exceeds 1.6:1 urbance is <2D from the sampling plan e is too near to the downstream distu Kev/v ght, g/g mole kg/m ³	following reasons: 15° 9:1 e rbance but is greater than c 16 27.4 (wet)	pr equal to 1D 29.2 (dry)
Please note that in conduct particulate The sampling plane is The gas profile has The highest to lowe The highest to lowe The upstream distu The sampling plane Stack Parameters Moisture content, 9 Gas molecular weig Gas density at STP, Gas Flow Paramete	e matter sampling at this location. s deemed to be non-compliant due to the a cyclonic component which exceeds est differential pressure ratio exceeds est gas velocity ratio exceeds 1.6:1 urbance is <2D from the sampling plan e is too near to the downstream distu Kev/v ght, g/g mole kg/m ³	following reasons: 15° 9:1 e rbance but is greater than c 16 27.4 (wet) 1.22 (wet)	pr equal to 1D 29.2 (dry)
Please note that in conduct particulate The sampling plane is The gas profile has The highest to lowe The highest to lowe The upstream distu The sampling plane Stack Parameters Moisture content, 9 Gas molecular weig Gas density at STP, Gas Flow Paramete Flow measurement	e matter sampling at this location. s deemed to be non-compliant due to the a cyclonic component which exceeds est differential pressure ratio exceeds est gas velocity ratio exceeds 1.6:1 urbance is <2D from the sampling plan e is too near to the downstream distu Kev/v ght, g/g mole kg/m ³	following reasons: 15° 9:1 e rbance but is greater than c 16 27.4 (wet) 1.22 (wet) 1101 & 1430	pr equal to 1D 29.2 (dry)
Please note that in conduct particulate The sampling plane is The gas profile has The highest to lowe The highest to lowe The upstream distu The sampling plane Stack Parameters Moisture content, 9 Gas molecular weig Gas density at STP, Gas Flow Paramete Flow measurement Temperature, °C	e matter sampling at this location. s deemed to be non-compliant due to the a cyclonic component which exceeds est differential pressure ratio exceeds est gas velocity ratio exceeds 1.6:1 urbance is <2D from the sampling plan e is too near to the downstream distu 6v/v ght, g/g mole kg/m ³ :rs t time(s) (hhmm)	following reasons: 15° 9:1 e rbance but is greater than c 16 27.4 (wet) 1.22 (wet) 1101 & 1430 57	pr equal to 1D 29.2 (dry)
Please note that in conduct particulate The sampling plane is The gas profile has The highest to lowe The highest to lowe The upstream distu The sampling plane Stack Parameters Moisture content, 9 Gas molecular weig Gas density at STP, Gas Flow Paramete Flow measurement Temperature, °C Temperature, K Velocity at samplin	e matter sampling at this location. s deemed to be non-compliant due to the a cyclonic component which exceeds est differential pressure ratio exceeds est gas velocity ratio exceeds 1.6:1 urbance is <2D from the sampling plan <u>e is too near to the downstream distu</u> (6v/v ght, g/g mole kg/m ³ ers t time(s) (hhmm)	following reasons: 15° 9:1 e rbance but is greater than c 16 27.4 (wet) 1.22 (wet) 1101 & 1430 57 330	pr equal to 1D 29.2 (dry)
Please note that in conduct particulate The sampling plane is The gas profile has The highest to lowe The highest to lowe The upstream distu The sampling plane Stack Parameters Moisture content, 9 Gas molecular weig Gas density at STP, Gas Flow Paramete Flow measurement Temperature, °C	e matter sampling at this location. s deemed to be non-compliant due to the a cyclonic component which exceeds est differential pressure ratio exceeds est gas velocity ratio exceeds 1.6:1 urbance is <2D from the sampling plan e is too near to the downstream distu 6v/v ght, g/g mole kg/m ³ ers t time(s) (hhmm) mg plane, m/s re, actual, m ³ /s	following reasons: 15° 9:1 e rbance but is greater than c 16 27.4 (wet) 1.22 (wet) 1101 & 1430 57 330 12	pr equal to 1D 29.2 (dry)
Please note that in conduct particulate The sampling plane is The gas profile has The highest to lowe The highest to lowe The upstream distu The sampling plane Stack Parameters Moisture content, 9 Gas molecular weig Gas density at STP, Gas Flow Paramete Flow measurement Temperature, °C Temperature, K Velocity at samplin Volumetric flow rat	e matter sampling at this location. s deemed to be non-compliant due to the a cyclonic component which exceeds est differential pressure ratio exceeds est gas velocity ratio exceeds 1.6:1 urbance is <2D from the sampling plan e is too near to the downstream distu 6v/v ght, g/g mole kg/m ³ ers t time(s) (hhmm) mg plane, m/s te, actual, m ³ /s te (wet STP), m ³ /s	following reasons: 15° 9:1 e tbance but is greater than c 16 27.4 (wet) 1.22 (wet) 1101 & 1430 57 330 12 57	pr equal to 1D 29.2 (dry)

Date	24/02/2021	Client	Borg Manufacturing Pty Ltd
Report	R010598	Stack ID	EPA 7 - Conti 2 Stage 1 Dryer Cyclone 1
			(West)
Licence No.	3035	Location	Oberon
Ektimo Staff	Steven Cooper & Ed Camilleri	State	NSW
Process Conditions	Please refer to client records.		2 112 19

Isokinetic Results	Results
Sampling time	1122-1425
	Concentration Mass Rate mg/m³ g/min
Antimony	<0.003 <0.005
Arsenic	0.0015 0.0031
Beryllium	<0.0003 <0.0007
Cadmium	<0.0003 <0.0005
Chromium	0.00069 0.0014
Cobalt	<0.0004 <0.0008
Lead	0.004 0.0081
Manganese	0.051 0.11
Mercury	<0.0003 <0.0007
Nickel	0.0014 0.0028
Selenium	<0.003 <0.006
Tin	0.0015 0.0031
Vanadium	<0.0007 <0.001
Type 1 & 2 Substances	
Upper Bound	
Total Type 1 Substances	≤0.0087 ≤0.018
Total Type 2 Substances	≤0.059 ≤0.12
Total Type 1 & 2 Substances	≤0.068 ≤0.14
Isokinetic Sampling Parameters	
Sampling time, min	120
Isokinetic rate, %	101
Velocity difference, %	9

Date	24/02/2021	Client	Borg Manufacturing Pty Ltd
	R010598	Stack ID	EPA 7 - Conti 2 Stage 1 Dryer Cyclone 1
Report	K010298	SLACK ID	
Licence No.	3035	Location	(West) Oberon
Ektimo Staff		State	NSW
	Steven Cooper & Ed Camilleri	State	
Process Conditions	Please refer to client records.		2 112 19
Smoke Obscuration		F	Result
	Time of assessment	132	25 - 1345
Smoke Obscuration			0
Total VOCs (as n-Pro	nanal		esults
	-		17-1417
	Sampling time	13	1/-141/
		Concentratio	on Mass Rate
		mg/m³	g/min
Total		3.9	8.1
VOC (speciated)			esults
	Sampling time	13	17-1417
		Concentratio mg/m³	on Mass Rate g/min
Detection limit ⁽¹⁾		<0.2	<0.3
α-Pinene		6	13
β-Pinene		5	10
D-Limonene		0.99	2.1

(1) Unless otherwise reported, the following target compounds were found to be below detection:

(1) Onless other was reported, the obrowing target compounds were found to be below detection. Dichloromethane, Ethanol, Isopropanol, 1,1Dichloroethene, trans-1,2-Dichloroethene, cis-1,2-Dichloroethene, Chloroform, 1,1,1-Trichloroethane, 1,2-Dichloroethane, Benzene, Carbon tetrachloride, Butanol, 1,1Dichloroethene, trans-1,2-Dichloroethylene, Toluene, 1,12-Trichloroethane, Tetrachloroethene, Chlorobenzene, Ethylbenzene, m +p-Xylene, Styrene, o-Xylene, 2-Butoxyethanol, 1,1,2,2-Tetrachloroethylene, sopropylbenzene, Propylbenzene, 1,3,5-Trimethylbenzene, tetr-Butylbenzene, 1,2,4-Trimethylbenzene, 1,2,3-Trimethylbenzene, Acetone, Pentane, Acrylonitrile, Methyl ethyl ketone, n-Hexane, Ethyl acetate, Cyclohexane, 2-Methylhexane, Isopropyl acetate, 2,3-Dimethylpentane, 3-Methylhexane, Heptane, Ethyl acrylate, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, 2-Hexanone, Octane, Butyl acetate, 1-M ethoxy-2-propyl acetate, Butyl acrylate, Nonane, Cellosolve acetate, Decane, 3-Carene, Undecane, Dodecane, Tridecane, Tetradecane

Date Report		- Clice		Rorg Manufacturing Dtultd
Report	25/02/2021 R010598	Clien Stacl		Borg Manufacturing Pty Ltd EPA 7 - Conti 2 Stage 1 Dryer Cyclone 1
	3035	Locat		(West)
Licence No. Ektimo Staff	Steven Cooper & Ed Ca			Oberon NSW
Process Conditions	Please refer to client			N S VV 2 112 19
Process conditions				2 112 19
Sampling Plane Details	;			
Sampling plane dimen	nsions	2480 mm		
Sampling plane area		4.83 m²		
Sampling port size, nu	mber	4" BSP (x2)		
Access & height of port	ts	Fixed ladder 35 m		
Duct orientation & sha	ape	Vertical Circu	lar	
Downstream disturbar	nce	Exit 1.5 D		
Upstream disturbance		Junction 0.5 D		
No. traverses & points	sampled	2 24		
Sample plane complia	ince to AS4323.1	Compliant but no	n-ideal	
	sponse to the cyclonic flo atter sampling at this loo		W EPA aı	pproved method deviation to AS4323.2 to
The sampling plane is de	emed to be non-compliant	due to the following reasons:		
	cyclonic component whic	_		
• •	differential pressure rat			
-	gas velocity ratio exceed			
	of the sampling plane is			
	ance is <2D from the sam			
		eam disturbance but is greater t	han or e	gual to 1D
1 01				
Stack Parameters				
Moisture content, %v/v		8.6		
Moisture content, %v/v Gas molecular weight,	, g/g mole	8.6 28.2 (wet)		29.1 (dry)
Moisture content, %v/v	, g/g mole			29.1 (dry) 1.30 (dry)
Moisture content, %v/v Gas molecular weight,	, g/g mole	28.2 (wet)		
Moisture content, %v/v Gas molecular weight, Gas density at STP, kg/ Gas Flow Parameters	, g/g mole ′m³	28.2 (wet) 1.26 (wet)		
Moisture content, %v/v Gas molecular weight, Gas density at STP, kg/ Gas Flow Parameters Flow measurement tim	, g/g mole ′m³	28.2 (wet) 1.26 (wet) 1145 & 1415		
Moisture content, %v/v Gas molecular weight, Gas density at STP, kg/ Gas Flow Parameters Flow measurement tim Temperature, °C	, g/g mole ′m³	28.2 (wet) 1.26 (wet) 1145 & 1415 45		
Moisture content, %v/v Gas molecular weight, Gas density at STP, kg/ Gas Flow Parameters Flow measurement tim	, g/g mole /m³ ne(s) (hhmm)	28.2 (wet) 1.26 (wet) 1145 & 1415		
Moisture content, %v/v Gas molecular weight, Gas density at STP, kg/ Gas Flow Parameters Flow measurement tin Temperature, °C Temperature, K Velocity at sampling p	, g/g mole /m³ ne(s) (hhmm) lane, m/s	28.2 (wet) 1.26 (wet) 1145 & 1415 45 318 13		
Moisture content, %v/v Gas molecular weight, Gas density at STP, kg/ Gas Flow Parameters Flow measurement tin Temperature, °C Temperature, K Velocity at sampling pl Volumetric flow rate, a	, g/g mole /m³ ne(s) (hhmm) lane, m/s actual, m³/s	28.2 (wet) 1.26 (wet) 1145 & 1415 45 318 13 61		
Moisture content, %v/v Gas molecular weight, Gas density at STP, kg/ Gas Flow Parameters Flow measurement tim Temperature, °C Temperature, K Velocity at sampling pi Volumetric flow rate, a Volumetric flow rate (v	, g/g mole /m³ ne(s) (hhmm) lane, m/s actual, m³/s wet STP), m³/s	28.2 (wet) 1.26 (wet) 1145 & 1415 45 318 13 61 46		
Moisture content, %v/v Gas molecular weight, Gas density at STP, kg/ Gas Flow Parameters Flow measurement tin Temperature, °C Temperature, K Velocity at sampling p Volumetric flow rate, a Volumetric flow rate (v Volumetric flow rate (c	, g/g mole /m³ ne(s) (hhmm) lane, m/s actual, m³/s wet STP), m³/s dry STP), m³/s	28.2 (wet) 1.26 (wet) 1145 & 1415 45 318 13 61		
Moisture content, %v/v Gas molecular weight, Gas density at STP, kg/ Gas Flow Parameters Flow measurement tim Temperature, °C Temperature, K Velocity at sampling pi Volumetric flow rate, a Volumetric flow rate (wet ba	, g/g mole /m³ ne(s) (hhmm) lane, m/s actual, m³/s wet STP), m³/s dry STP), m³/s	28.2 (wet) 1.26 (wet) 1145 & 1415 45 318 13 61 46 42		1.30 (dry)
Moisture content, %v/v Gas molecular weight, Gas density at STP, kg/ Gas Flow Parameters Flow measurement tim Temperature, °C Temperature, K Velocity at sampling pi Volumetric flow rate, a Volumetric flow rate (wet ba	, g/g mole 'm ³ ne(s) (hhmm) lane, m/s actual, m ³ /s wet STP), m ³ /s dry STP), m ³ /s asis), kg/hour	28.2 (wet) 1.26 (wet) 1145 & 1415 45 318 13 61 46 42 210000		1.30 (dry)
Moisture content, %v/v Gas molecular weight, Gas density at STP, kg/ Gas Flow Parameters Flow measurement tin Temperature, °C Temperature, K Velocity at sampling p Volumetric flow rate, a Volumetric flow rate (v Volumetric flow rate (c	, g/g mole /m³ ne(s) (hhmm) lane, m/s actual, m³/s wet STP), m³/s dry STP), m³/s	28.2 (wet) 1.26 (wet) 1145 & 1415 45 318 13 61 46 42 210000		1.30 (dry)
Moisture content, %v/v Gas molecular weight, Gas density at STP, kg/ Gas Flow Parameters Flow measurement tim Temperature, °C Temperature, K Velocity at sampling pi Volumetric flow rate, a Volumetric flow rate (wet ba	, g/g mole 'm ³ ne(s) (hhmm) lane, m/s actual, m ³ /s wet STP), m ³ /s dry STP), m ³ /s asis), kg/hour	28.2 (wet) 1.26 (wet) 1145 & 1415 45 318 13 61 46 42 210000 1201	-1406 12	1.30 (dry) sults 01-1406 (PM10)
Moisture content, %v/v Gas molecular weight, Gas density at STP, kg/ Gas Flow Parameters Flow measurement tim Temperature, °C Temperature, K Velocity at sampling pi Volumetric flow rate, a Volumetric flow rate (wet ba	, g/g mole 'm ³ ne(s) (hhmm) lane, m/s actual, m ³ /s wet STP), m ³ /s dry STP), m ³ /s asis), kg/hour	28.2 (wet) 1.26 (wet) 1145 & 1415 45 318 13 61 46 42 210000 1201 Conc		1.30 (dry) sults 01-1406 (PM10)
Moisture content, %v/v Gas molecular weight, Gas density at STP, kg/ Gas Flow Parameters Flow measurement tim Temperature, °C Temperature, K Velocity at sampling pl Volumetric flow rate, a Volumetric flow rate (w Volumetric flow rate (w Mass flow rate (wet ba	, g/g mole 'm ³ ne(s) (hhmm) lane, m/s actual, m ³ /s wet STP), m ³ /s dry STP), m ³ /s asis), kg/hour	28.2 (wet) 1.26 (wet) 1145 & 1415 45 318 13 61 46 42 210000 1201 Conc	-1406 12 entration ng/m ³	1.30 (dry) sults 01-1406 (PM10) Mass Rate g/min
Moisture content, %v/v Gas molecular weight, Gas density at STP, kg/ Gas Flow Parameters Flow measurement tim Temperature, °C Temperature, K Velocity at sampling pl Volumetric flow rate, a Volumetric flow rate (we Volumetric flow rate (we Volumetric flow rate (we Solid Particles	, g/g mole 'm ³ ne(s) (hhmm) lane, m/s actual, m ³ /s wet STP), m ³ /s dry STP), m ³ /s asis), kg/hour Sampling time	28.2 (wet) 1.26 (wet) 1145 & 1415 45 318 13 61 46 42 210000 1201 Conc	-1406 12 entration ng/m ³ 79	1.30 (dry) 1.30 (dry) sults 01-1406 (PM10) Mass Rate g/min 190
Moisture content, %v/v Gas molecular weight, Gas density at STP, kg/ Gas Flow Parameters Flow measurement tim Temperature, °C Temperature, K Velocity at sampling pl Volumetric flow rate, a Volumetric flow rate (we Volumetric flow rate (we Volumetric flow rate (we Nos flow rate (wet based) Isokinetic Results	, g/g mole 'm ³ ne(s) (hhmm) lane, m/s actual, m ³ /s wet STP), m ³ /s dry STP), m ³ /s asis), kg/hour Sampling time	28.2 (wet) 1.26 (wet) 1145 & 1415 45 318 13 61 46 42 210000 1201 Conc	-1406 12 entration ng/m ³ 79 8.9	1.30 (dry) 1.30 (dry) sults 01-1406 (PM10) Mass Rate g/min 190 21
Moisture content, %v/v Gas molecular weight, Gas density at STP, kg/ Gas Flow Parameters Flow measurement tim Temperature, °C Temperature, K Velocity at sampling pl Volumetric flow rate, a Volumetric flow rate (we Volumetric flow rate (we Volumetric flow rate (we Nass flow rate (wet bas Isokinetic Results	, g/g mole 'm ³ ne(s) (hhmm) lane, m/s actual, m ³ /s wet STP), m ³ /s dry STP), m ³ /s asis), kg/hour Sampling time	28.2 (wet) 1.26 (wet) 1145 & 1415 45 318 13 61 46 42 210000 1201 Conc	-1406 12 entration ng/m ³ 79 8.9	1.30 (dry) 1.30 (dry) sults 01-1406 (PM10) Mass Rate g/min 190
Moisture content, %v/v Gas molecular weight, Gas density at STP, kg/ Gas Flow Parameters Flow measurement tim Temperature, °C Temperature, K Velocity at sampling pl Volumetric flow rate, a Volumetric flow rate (we Volumetric flow rate (we Volumetric flow rate (c Mass flow rate (wet bas Isokinetic Results Solid Particles Fine particulates (PM1 D50 cut size, 10µm	, g/g mole 'm ³ ne(s) (hhmm) lane, m/s actual, m ³ /s wet STP), m ³ /s dry STP), m ³ /s asis), kg/hour Sampling time	28.2 (wet) 1.26 (wet) 1145 & 1415 45 318 13 61 46 42 210000 1201 Conc	-1406 12 entration ng/m ³ 79 8.9	1.30 (dry) sults 01-1406 (PM10) Mass Rate g/min 190 21
Moisture content, %v/v Gas molecular weight, Gas density at STP, kg/ Gas Flow Parameters Flow measurement tim Temperature, °C Temperature, K Velocity at sampling pl Volumetric flow rate, a Volumetric flow rate (we Volumetric flow rate (we Volumetric flow rate (we Mass flow rate (wet bas Isokinetic Results Solid Particles Fine particulates (PM1 D50 cut size, 10µm Sulfur dioxide	, g/g mole 'm ³ ne(s) (hhmm) lane, m/s actual, m ³ /s dry STP), m ³ /s dry STP), m ³ /s asis), kg/hour Sampling time	28.2 (wet) 1.26 (wet) 1145 & 1415 45 318 13 61 46 42 210000 1201 Conc	-1406 12 entration ng/m ³ 79 8.9 11	1.30 (dry) 1.30 (dry) sults 01-1406 (PM10) Mass Rate g/min 190 21 0.0
Moisture content, %v/v Gas molecular weight, Gas density at STP, kg/ Gas Flow Parameters Flow measurement tim Temperature, °C Temperature, K Velocity at sampling pi Volumetric flow rate, a Volumetric flow rate (weight Volumetric flow rate (weight) Volumetric flow rate (weight) Solid Particles Fine particulates (PM1 D50 cut size, 10µm Sulfur dioxide Sulfur trioxide and/or S	, g/g mole 'm ³ ne(s) (hhmm) lane, m/s actual, m ³ /s actual, m ³ /s dry STP), m ³ /s asis), kg/hour Sampling time .0) Sulfuric acid (as SO3)	28.2 (wet) 1.26 (wet) 1145 & 1415 45 318 13 61 46 42 210000 1201 Conc	-1406 12 entration ng/m ³ 79 8.9 10 0.21 0.19	1.30 (dry) 1.30 (dry) Sults 01-1406 (PM10) Mass Rate g/min 190 21 0.0 0.49 0.46
Moisture content, %v/v Gas molecular weight, Gas density at STP, kg/ Gas Flow Parameters Flow measurement tim Temperature, °C Temperature, K Velocity at sampling pl Volumetric flow rate, a Volumetric flow rate (we Volumetric flow rate (we Volumetric flow rate (c Mass flow rate (wet ba Isokinetic Results Solid Particles Fine particulates (PM1 D50 cut size, 10µm Sulfur dioxide Sulfur trioxide and/or S	, g/g mole 'm ³ ne(s) (hhmm) lane, m/s actual, m ³ /s actual, m ³ /s dry STP), m ³ /s asis), kg/hour Sampling time .0) Sulfuric acid (as SO3)	28.2 (wet) 1.26 (wet) 1145 & 1415 45 318 13 61 46 42 210000 1201 Conc	entration ng/m ³ 79 8.9 11 0.21 0.19 kkinetic	1.30 (dry) 1.30 (dry) 5ults 01-1406 (PM10) Mass Rate g/min 190 21 0.0 0.49 0.46 PM 10
Moisture content, %v/v Gas molecular weight, Gas density at STP, kg/ Gas Flow Parameters Flow measurement tim Temperature, °C Temperature, K Velocity at sampling pi Volumetric flow rate, a Volumetric flow rate (we Volumetric flow rate (we Volumet	, g/g mole 'm ³ ne(s) (hhmm) lane, m/s actual, m ³ /s actual, m ³ /s dry STP), m ³ /s asis), kg/hour Sampling time .0) Sulfuric acid (as SO3)	28.2 (wet) 1.26 (wet) 1145 & 1415 45 318 13 61 46 42 210000 1201 Conc	-1406 12 entration ng/m ³ 79 8.9 11 0.21 0.21 0.19 kinetic 120	1.30 (dry) 1.30 (dry) Sults 01-1406 (PM10) Mass Rate g/min 190 21 0.0 0.49 0.46 PM 10 120
Moisture content, %v/v Gas molecular weight, Gas density at STP, kg/ Gas Flow Parameters Flow measurement tim Temperature, °C Temperature, K Velocity at sampling pl Volumetric flow rate, a Volumetric flow rate (we Volumetric flow rate (we Volumetric flow rate (c Mass flow rate (wet ba Isokinetic Results Solid Particles Fine particulates (PM1 D50 cut size, 10µm Sulfur dioxide Sulfur trioxide and/or S	, g/g mole 'm ³ ne(s) (hhmm) lane, m/s actual, m ³ /s actual, m ³ /s dry STP), m ³ /s asis), kg/hour Sampling time .0) Sulfuric acid (as SO3)	28.2 (wet) 1.26 (wet) 1145 & 1415 45 318 13 61 46 42 210000 1201 Conc	-1406 12 entration ng/m ³ 79 8.9 11 0.21 0.21 0.19 kkinetic	1.30 (dry) 1.30 (dry) 5ults 01-1406 (PM10) Mass Rate g/min 190 21 0.0 0.49 0.46 PM 10

NATA

2.4 EPA 8 – Conti 2 Stage 1 Dryer Cyclone 2 (East)

	23/02/2021	Client	Borg Manufacturing Pty Ltd
Report	R010598	Stack ID	EPA 8 - Conti 2 Stage 1 Dryer Cyclone 2 (East)
Licence No.	3035	Location	Oberon
Ektimo Staff	Steven Cooper & Ed Camilleri	State	NSW
Process Conditions	Please refer to client records.	State	2112
riocess conditions	riedse lefer to chefit records.		2.112.1
Sampling Plane Deta	ails		
Sampling plane dim	iensions	2480 mm	
Sampling plane are	a	4.83 m ²	
Sampling port size,	number	4" BSP (x2)	
Access & height of p	orts	Fixed ladder 35 m	
Duct orientation & s	shape	Vertical Circular	
Downstream disturb	bance	Exit 1.5 D	
Upstream disturban	се	Junction 0.5 D	
No. traverses & poin	its sampled	2 24	
Sample plane comp	liance to AS4323.1	Compliant but non-ide	al
	response to the cyclonic flow, Borg Ma te matter sampling at this location.	anufacturing has a NSW EP/	A approved method deviation to AS4323.2
Please note that in to conduct particula The sampling plane is The gas profile has The upstream distur		ving reasons: 15° e	
Please note that in to conduct particula The sampling plane is The gas profile has The upstream distur The sampling plane	te matter sampling at this location. deemed to be non-ideal due to the follow a cyclonic component which exceeds rbance is <2D from the sampling plan	ving reasons: 15° e	
Please note that in to conduct particula The sampling plane is The gas profile has The upstream distur The sampling plane Stack Parameters	te matter sampling at this location. deemed to be non-ideal due to the follov a cyclonic component which exceeds rbance is <2D from the sampling plan is too near to the downstream distu	ving reasons: 15° e rbance but is greater than c	
Please note that in to conduct particula The sampling plane is The gas profile has The upstream distur The sampling plane Stack Parameters Moisture content, %	te matter sampling at this location. deemed to be non-ideal due to the follov a cyclonic component which exceeds rbance is <2D from the sampling plan is too near to the downstream distu	ving reasons: 15° e rbance but is greater than c	or equal to 1D
Please note that in to conduct particula The sampling plane is The gas profile has The upstream distur The sampling plane Stack Parameters Moisture content, % Gas molecular weig	te matter sampling at this location. deemed to be non-ideal due to the follov a cyclonic component which exceeds rbance is <2D from the sampling plan is too near to the downstream distu v/v ht, g/g mole	ving reasons: 15° e rbance but is greater than c	
Please note that in to conduct particula The sampling plane is The gas profile has The upstream distur The sampling plane Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, k	te matter sampling at this location. deemed to be non-ideal due to the follov a cyclonic component which exceeds rbance is <2D from the sampling plan is too near to the downstream distu v/v ht, g/g mole cg/m ³	ving reasons: 15° e rbance but is greater than c 17 27.4 (wet)	pr equal to 1D 29.3 (dry)
Please note that in to conduct particula The sampling plane is The gas profile has The upstream distur The sampling plane Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, b Gas Flow Parameter	te matter sampling at this location. deemed to be non-ideal due to the follov a cyclonic component which exceeds rbance is <2D from the sampling plan is too near to the downstream distu- v/v ht, g/g mole kg/m ³	ving reasons: 15° e bance but is greater than c 17 27.4 (wet) 1.22 (wet)	pr equal to 1D 29.3 (dry)
Please note that in to conduct particula The sampling plane is The gas profile has The upstream distur The sampling plane Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, H Gas Flow Parameter Flow measurement	te matter sampling at this location. deemed to be non-ideal due to the follov a cyclonic component which exceeds rbance is <2D from the sampling plan is too near to the downstream distu- v/v ht, g/g mole kg/m ³	ving reasons: 15° e rbance but is greater than c 17 27.4 (wet) 1.22 (wet) 1002 & 1348	pr equal to 1D 29.3 (dry)
Please note that in to conduct particula The sampling plane is The gas profile has The upstream distur The sampling plane Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, H Gas Flow Parameter Flow measurement Temperature, °C	te matter sampling at this location. deemed to be non-ideal due to the follov a cyclonic component which exceeds rbance is <2D from the sampling plan is too near to the downstream distu- v/v ht, g/g mole kg/m ³	ving reasons: 15° e bance but is greater than c 17 27.4 (wet) 1.22 (wet) 1002 & 1348 57	pr equal to 1D 29.3 (dry)
Please note that in to conduct particula The sampling plane is The gas profile has The upstream distur The sampling plane Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, H Gas Flow Parameter Flow measurement Temperature, °C Temperature, K	te matter sampling at this location. deemed to be non-ideal due to the follov a cyclonic component which exceeds rbance is <2D from the sampling plan is too near to the downstream distu- v/v ht, g/g mole kg/m ³ rs time(s) (hhmm)	ving reasons: 15° e rbance but is greater than c 17 27.4 (wet) 1.22 (wet) 1002 & 1348 57 330	pr equal to 1D 29.3 (dry)
Please note that in to conduct particula The sampling plane is The gas profile has The upstream distur The sampling plane Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, H Gas Flow Parameter Flow measurement Temperature, °C Temperature, K Velocity at sampling	te matter sampling at this location. deemed to be non-ideal due to the follov a cyclonic component which exceeds rbance is <2D from the sampling plan is too near to the downstream distu- v/v ht, g/g mole (g/m ³ rs time(s) (hhmm) g plane, m/s	ving reasons: 15° e rbance but is greater than c 17 27.4 (wet) 1.22 (wet) 1002 & 1348 57 330 12	pr equal to 1D 29.3 (dry)
Please note that in to conduct particula The sampling plane is The gas profile has The upstream distur The sampling plane Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, H Gas Flow Parameter Flow measurement Temperature, °C Temperature, K Velocity at sampling Volumetric flow rate	te matter sampling at this location. deemed to be non-ideal due to the follov a cyclonic component which exceeds rbance is <2D from the sampling plan is too near to the downstream distu- v/v ht, g/g mole (g/m ³ rs time(s) (hhmm) g plane, m/s e, actual, m ³ /s	ving reasons: 15° e rbance but is greater than c 17 27.4 (wet) 1.22 (wet) 1002 & 1348 57 330 12 58	pr equal to 1D 29.3 (dry)
Please note that in to conduct particula The sampling plane is The gas profile has The upstream distur The sampling plane Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, k Gas Flow Parameter Flow measurement Temperature, °C Temperature, K Velocity at sampling Volumetric flow rate	te matter sampling at this location. deemed to be non-ideal due to the follow a cyclonic component which exceeds rbance is <2D from the sampling plan is too near to the downstream distu- v/v ht, g/g mole (g/m ³) rs time(s) (hhmm) g plane, m/s e, actual, m ³ /s e (wet STP), m ³ /s	ving reasons: 15° e rbance but is greater than c 17 27.4 (wet) 1.22 (wet) 1002 & 1348 57 330 12 58 42	pr equal to 1D 29.3 (dry)
Please note that in to conduct particula The sampling plane is The gas profile has The upstream distur The sampling plane Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, k Gas Flow Parameter Flow measurement Temperature, °C Temperature, K Velocity at sampling Volumetric flow rate	te matter sampling at this location. deemed to be non-ideal due to the follow a cyclonic component which exceeds rbance is <2D from the sampling plan is too near to the downstream distu- v/v ht, g/g mole (g/m ³ rs time(s) (hhmm) g plane, m/s e, actual, m ³ /s e (wet STP), m ³ /s e (dry STP), m ³ /s	ving reasons: 15° e rbance but is greater than c 17 27.4 (wet) 1.22 (wet) 1002 & 1348 57 330 12 58	pr equal to 1D 29.3 (dry)

Date	23/02/2021	Client	Borg Manufacturing Pty Ltd
Report	R010598	Stack ID	EPA 8 - Conti 2 Stage 1 Dryer Cyclone 2
			(East)
Licence No.	3035	Location	Oberon
Ektimo Staff	Steven Cooper & Ed Ca	ri State	NSW
Process Conditions	Please refer to client		2 112 19
Isokinetic Results		Re	esults
	Sampling time	1108-1312 1	108-1312 (PM10)
		Concentratio mg/m³	n Mass Rate g/min
Solid Particles		68	130
Fine particulates (PN	110)	28	54
D50 cut size, 10µm		-	10.0

Sulfur dioxide Sulfur trioxide and/or Sulfuric acid (as SO3)	<0.02 <0.03 0.074 0.14
Isokinetic Sampling Parameters	Isokinetic PM 10
Sampling time, min	120 120
Isokinetic rate, %	102 98
Velocity difference, %	6 6

Total VOCs (as n-Propane)	Results
Sampling time	1208-1309
	Concentration Mass Rate mg/m³ g/min
Total	9.7 20

VOC (speciated)	Results
Sampling time	1208-1309
	Concentration Mass Rate mg/m³ g/min
Detection limit ⁽¹⁾	<0.2 <0.3
α-Pinene	15 31
β-Pinene	13 28
D-Limonene	1.8 3.8

(1) Unless otherwise reported, the following target compounds were found to be below detection:

Dichloromethane, Ethanol, Isopropanol, 1,1-Dichloroethane, trans-12-Dichloroethane, cis-12-Dichloroethane, Chloroform, 1,1,1-Trichloroethane, 12-Dichloroethane, Benzene, Carbon tetrachloride, Butanol, 14M ethoxy-2-propanol, Trichloroethylene, Toluene, 1,12-Trichloroethane, Tetrachloroethane, Chlorobenzene, Ethylbenzene, m + p-Xylene, Styrene, o-Xylene, 2-Butoxyethanol, 1,12,2-Tetrachloroethane, Isopropylbenzene, Propylbenzene, 1,3,5-Trimethylbenzene, tetri-Butylbenzene, 1,2,4-Trimethylbenzene, 1,2,3-Dimethylbenzene, Acetone, Pentane, Acrylonitrile, M ethyl ethyl ketone, n-Hexane, Ethyl acetate, Cyclohexane, 2-M ethylhexane, Isopropyl acetate, 2,3-Dimethylpentane, 3-M ethylhexane, Heptane, Ethyl acrylate, M ethyl methacrylate, Propyl acetate, M ethyl yl sobutyl Ketone, Cellosolve acetate, Decane, 3-Carene, Undecane, Dodecane, Tridecane, Tetradecane

Date	23/02/2021	Client	Borg Manufacturing Pty Ltd
Report	R010598	Stack ID	EPA 8 - Conti 2 Stage 1 Dryer Cyclone 2 (East)
Licence No.	3035	Location	Oberon
Ektimo Staff	Steven Cooper & Ed Camilleri	State	NSW
Process Conditions	Please refer to client records.		2 12 19
Sampling Plane Deta	nile		
Sampling plane dim		2480 mm	
Sampling plane area		4.83 m ²	
Sampling port size,		4" BSP (x2)	
Access & height of p		Fixed ladder 35 m	
Duct orientation & s		Vertical Circular	
Downstream disturb	•	Exit 1.5 D	
Upstream disturban		Junction 0.5 D	
No. traverses & poin		2 24	
Sample plane comp	•	Compliant but non-ide	al
Comments Please note that in	response to the cyclonic flow. Borg M	anufacturing has a NSW EPA	A approved method deviation to AS4323.2
Please note that in to conduct particula The sampling plane is The gas profile has The upstream distur	response to the cyclonic flow, Borg M te matter sampling at this location. deemed to be non-ideal due to the follo a cyclonic component which exceeds rbance is <2D from the sampling plan is too near to the downstream distu	ving reasons: 15° e	A approved method deviation to AS4323.2 or equal to 1D
Please note that in to to conduct particula The sampling plane is The gas profile has The upstream distur The sampling plane	te matter sampling at this location. deemed to be non-ideal due to the follo a cyclonic component which exceeds rbance is <2D from the sampling plan	ving reasons: 15° e	
Please note that in to to conduct particula The sampling plane is The gas profile has The upstream distur The sampling plane Stack Parameters	te matter sampling at this location. deemed to be non-ideal due to the follo a cyclonic component which exceeds rbance is <2D from the sampling plan is too near to the downstream distu	ving reasons: 15° e rbance but is greater than c	
Please note that in to to conduct particula The sampling plane is The gas profile has The upstream distur The sampling plane Stack Parameters Moisture content, %	te matter sampling at this location. deemed to be non-ideal due to the follo a cyclonic component which exceeds rbance is <2D from the sampling plan is too near to the downstream distu	ving reasons: 15° e rbance but is greater than c 17	or equal to 1D
Please note that in to to conduct particula The sampling plane is The gas profile has The upstream distur The sampling plane Stack Parameters	te matter sampling at this location. deemed to be non-ideal due to the follo a cyclonic component which exceeds rbance is <2D from the sampling plan is too near to the downstream distu v/v ht, g/g mole	ving reasons: 15° e rbance but is greater than c	
Please note that in to to conduct particula The sampling plane is The gas profile has The upstream distur The sampling plane Stack Parameters Moisture content, % Gas molecular weig	te matter sampling at this location. deemed to be non-ideal due to the follo a cyclonic component which exceeds rbance is <2D from the sampling plan is too near to the downstream distu v/v ht, g/g mole cg/m ³	ving reasons: 15° e rbance but is greater than c 17 27.4 (wet)	29.3 (dry)
Please note that in to to conduct particula The sampling plane is The gas profile has The upstream distur The sampling plane Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, k	te matter sampling at this location. deemed to be non-ideal due to the follo a cyclonic component which exceeds rbance is <2D from the sampling plan is too near to the downstream distu v/v ht, g/g mole cg/m ³	ving reasons: 15° e rbance but is greater than c 17 27.4 (wet)	29.3 (dry)
Please note that in to to conduct particula The sampling plane is The gas profile has The upstream distur The sampling plane Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, k Gas Flow Parameter	te matter sampling at this location. deemed to be non-ideal due to the follo a cyclonic component which exceeds rbance is <2D from the sampling plan is too near to the downstream distu v/v ht, g/g mole cg/m ³	ving reasons: 15° e rbance but is greater than c 17 27.4 (wet) 1.22 (wet)	29.3 (dry)
Please note that in to to conduct particula The sampling plane is The gas profile has The upstream distur The sampling plane Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, k Gas Flow Parameter Flow measurement	te matter sampling at this location. deemed to be non-ideal due to the follo a cyclonic component which exceeds rbance is <2D from the sampling plan is too near to the downstream distu v/v ht, g/g mole cg/m ³	ving reasons: 15° e rbance but is greater than c 17 27.4 (wet) 1.22 (wet) 1348 & 1835	29.3 (dry)
Please note that in to to conduct particula The sampling plane is The gas profile has The upstream distur The sampling plane Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, M Gas Flow Parameter Flow measurement Temperature, °C	te matter sampling at this location. deemed to be non-ideal due to the follo a cyclonic component which exceeds rbance is <2D from the sampling plan is too near to the downstream distu v/v ht, g/g mole kg/m ³ 'S time(s) (hhmm)	ving reasons: 15° e rbance but is greater than c 17 27.4 (wet) 1.22 (wet) 1348 & 1835 56	29.3 (dry)
Please note that in t to conduct particula The sampling plane is The gas profile has The upstream distur The sampling plane Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, k Gas Flow Parameter Flow measurement Temperature, °C Temperature, K	te matter sampling at this location. deemed to be non-ideal due to the follo a cyclonic component which exceeds rbance is <2D from the sampling plan is too near to the downstream distu v/v ht, g/g mole (g/m ³ 's time(s) (hhmm) g plane, m/s	ving reasons: 15° e rbance but is greater than c 17 27.4 (wet) 1.22 (wet) 1348 & 1835 56 329	29.3 (dry)
Please note that in t to conduct particula The sampling plane is The gas profile has The upstream distur The sampling plane Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, k Gas Flow Parameter Flow measurement Temperature, °C Temperature, K Velocity at sampling	te matter sampling at this location. deemed to be non-ideal due to the follo a cyclonic component which exceeds rbance is <2D from the sampling plan is too near to the downstream distu v/v ht, g/g mole (g/m ³ 'S time(s) (hhmm) g plane, m/s e, actual, m ³ /s	ving reasons: 15° e rbance but is greater than c 17 27.4 (wet) 1.22 (wet) 1348 & 1835 56 329 12	29.3 (dry)
Please note that in it to conduct particula The sampling plane is The gas profile has The upstream distur The sampling plane Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, k Gas Flow Parameter Flow measurement Temperature, °C Temperature, K Velocity at sampling Volumetric flow rate	te matter sampling at this location. deemed to be non-ideal due to the follo a cyclonic component which exceeds rbance is <2D from the sampling plan is too near to the downstream distu v/v ht, g/g mole cg/m ³ 'S time(s) (hhmm) g plane, m/s e, actual, m ³ /s e (wet STP), m ³ /s	ving reasons: 15° e rbance but is greater than c 17 27.4 (wet) 1.22 (wet) 1348 & 1835 56 329 12 58	29.3 (dry)

Date Report	23/02/2021 R010598			Client Stack ID	Borg Manufacturing Pty Ltd EPA 8 - Conti 2 Stage 1 Dryer Cyclone 2 (East)			
Licence No.	3035			Location	Oberon			
Ektimo Staff	Steven Cooper & Ed (State	NSW			
Process Conditions	Please refer to clien	t records.					2 112 19	
Gas Analyser Results		Aver	age	Mini	mum	Maxii	num	
····	Sampling time	1426 -	-	1426	-1612	1426 -	1612	
Combustion Gases		Concentration mg/m³	Mass Rate g/min	Concentration mg/m³	Mass Rate g/min	Concentration mg/m ³	Mass Rate g/min	
Nitrogen oxides (as NO ₂)		210	440	180	380	230	490	
		Concentration %v/v		Concentration %v/v		Concentration %v/v		
Carbon dioxide		2.8		2.4		3.2		
Oxygen		17.9		17.6		18.3		
Formaldehyde				Res	ults			
	Sampling time			1316	-1416			
				Concentration mg/m³	Mass Rate g/min			
Formaldehyde				3	6.4			
Isokinetic Results				Rec	ults			
isokine ne nesuris	Samplingtime				-1625			
				Concentration mg/m ³	Mass Rate g/min			
Chloride (as HCl)				<0.02	<0.05			
Chlorine				0.01	0.021			
Total fluoride (as HF)				<0.03	<0.06			
Isokinetic Sampling Paramo	eters							
Sampling time, min				120				
Isokinetic rate, %				103				
Velocity difference, %				8				

Date	23/02/2021	Client	Borg Manufacturing Pty Ltd
Report	R010598	Stack ID	EPA 8 - Conti 2 Stage 1 Dryer Cyclone 2
			(East)
Licence No.	3035	Location	Oberon
Ektimo Staff	Steven Cooper & Ed Camilleri	State	NSW
Process Conditions	Please refer to client records.		2121
Sampling Plane Deta	ils		
Sampling plane dime	ensions	2480 mm	
Sampling plane area		4.83 m²	
Sampling port size, n	umber	4" BSP (x2)	
Access & height of po	orts	Fixed ladder 35 m	
Duct orientation & s	hape	Vertical Circular	
Downstream disturb	ance	Exit 1.5 D	
Upstream disturband	ce	Junction 0.5 D	
No. traverses & point	ts sampled	2 24	
Sample plane compliance to AS4323.1		Compliant but non-ide	al
Comments Please note that in n		anufacturing has a NSW EP.	A approved method deviation to AS4323.2
Comments Please note that in r to conduct particulat The sampling plane is o The gas profile has a The upstream disturl	esponse to the cyclonic flow, Borg Ma e matter sampling at this location. deemed to be non-ideal due to the follov a cyclonic component which exceeds bance is <2D from the sampling plan is too near to the downstream distur	ving reasons: 15° e	
Comments Please note that in r to conduct particulat The sampling plane is o The gas profile has a The upstream disturl The sampling plane	e matter sampling at this location. deemed to be non-ideal due to the follow a cyclonic component which exceeds bance is <2D from the sampling plan	ving reasons: 15° e	
Comments Please note that in ri- to conduct particulat The sampling plane is of The gas profile has a The upstream disturd The sampling plane Stack Parameters	e matter sampling at this location. deemed to be non-ideal due to the follow a cyclonic component which exceeds bance is <2D from the sampling plan is too near to the downstream distur	ving reasons: 15° e bance but is greater than o	
Comments Please note that in ri- to conduct particulat The sampling plane is of The gas profile has a The upstream disturd The sampling plane Stack Parameters Moisture content, %	e matter sampling at this location. deemed to be non-ideal due to the follow a cyclonic component which exceeds bance is <2D from the sampling plan is too near to the downstream distur /v	ving reasons: 15° e <u>bance but is greater than c</u> 17	or equal to 1D
Comments Please note that in ri- to conduct particulat The sampling plane is o The gas profile has a The upstream disturd The sampling plane Stack Parameters Moisture content, %v Gas molecular weigh	e matter sampling at this location. deemed to be non-ideal due to the follow a cyclonic component which exceeds bance is <2D from the sampling plan is too near to the downstream distur- t/v ht, g/g mole	ving reasons: 15° e bance but is greater than o	
Comments Please note that in ri- to conduct particulat The sampling plane is o The gas profile has a The upstream disturd The sampling plane Stack Parameters Moisture content, %v Gas molecular weigh Gas density at STP, k	e matter sampling at this location. deemed to be non-ideal due to the follow a cyclonic component which exceeds bance is <2D from the sampling plan is too near to the downstream distu- r/v it, g/g mole g/m ³	ving reasons: 15° e bance but is greater than o 17 27.4 (wet)	pr equal to 1D 29.3 (dry)
Comments Please note that in ri- to conduct particulat The sampling plane is o The gas profile has a The upstream disturi The sampling plane Stack Parameters Moisture content, %v Gas molecular weigh Gas flow Parameters	e matter sampling at this location. deemed to be non-ideal due to the follow a cyclonic component which exceeds bance is <2D from the sampling plan is too near to the downstream distur- y/v ht, g/g mole g/m ³	ving reasons: 15° e bance but is greater than o 17 27.4 (wet)	pr equal to 1D 29.3 (dry)
Comments Please note that in ri- to conduct particulat The sampling plane is of The gas profile has a The upstream disturd The sampling plane Stack Parameters Moisture content, %w Gas molecular weigh Gas density at STP, k Gas Flow Parameters Flow measurement t	e matter sampling at this location. deemed to be non-ideal due to the follow a cyclonic component which exceeds bance is <2D from the sampling plan is too near to the downstream distur- y/v ht, g/g mole g/m ³	ving reasons: 15° e bance but is greater than o 17 27.4 (wet) 1.22 (wet) 1348 & 1835	pr equal to 1D 29.3 (dry)
Comments Please note that in ri- to conduct particulat The sampling plane is of The gas profile has a The upstream disturd The sampling plane Stack Parameters Moisture content, %w Gas molecular weigh Gas density at STP, k Gas Flow Parameters Flow measurement t Temperature, °C	e matter sampling at this location. deemed to be non-ideal due to the follow a cyclonic component which exceeds bance is <2D from the sampling plan is too near to the downstream distur- y/v ht, g/g mole g/m ³	ving reasons: 15° e bance but is greater than o 17 27.4 (wet) 1.22 (wet)	pr equal to 1D 29.3 (dry)
Comments Please note that in ri- to conduct particulat The sampling plane is of The gas profile has a The upstream disturd The sampling plane Stack Parameters Moisture content, %w Gas molecular weigh Gas density at STP, k Gas Flow Parameters Flow measurement t Temperature, °C Temperature, K	e matter sampling at this location. deemed to be non-ideal due to the follow a cyclonic component which exceeds boance is <2D from the sampling plan is too near to the downstream distur- r/v nt, g/g mole g/m ³ s ime(s) (hhmm)	ving reasons: 15° e <u>bance but is greater than (</u> 17 27.4 (wet) 1.22 (wet) 1348 & 1835 56 329	pr equal to 1D 29.3 (dry)
Comments Please note that in ri- to conduct particulat The sampling plane is of The gas profile has a The upstream disturd The sampling plane Stack Parameters Moisture content, %w Gas molecular weigh Gas density at STP, kj Gas Flow Parameters Flow measurement t Temperature, °C Temperature, K	e matter sampling at this location. deemed to be non-ideal due to the follow a cyclonic component which exceeds bance is <2D from the sampling plan is too near to the downstream distur- y/v nt, g/g mole g/m ³ s ime(s) (hhmm) plane, m/s	ving reasons: 15° e bance but is greater than o 17 27.4 (wet) 1.22 (wet) 1348 & 1835 56 329 12	pr equal to 1D 29.3 (dry)
Comments Please note that in ri- to conduct particulat The sampling plane is of The gas profile has a The upstream disturd The sampling plane Stack Parameters Moisture content, %w Gas molecular weigh Gas density at STP, kj Gas Flow Parameters Flow measurement t Temperature, °C Temperature, K Velocity at sampling Volumetric flow rate,	e matter sampling at this location. deemed to be non-ideal due to the follow a cyclonic component which exceeds boance is <2D from the sampling plan is too near to the downstream distur- ty v v t, g/g mole g/m ³ s ime(s) (hhmm) plane, m/s , actual, m ³ /s	ving reasons: 15° e 'bance but is greater than o 17 27.4 (wet) 1.22 (wet) 1348 & 1835 56 329 12 58	pr equal to 1D 29.3 (dry)
Comments Please note that in r to conduct particulat The sampling plane is o The gas profile has a The upstream disturd The sampling plane Stack Parameters	e matter sampling at this location. deemed to be non-ideal due to the follow a cyclonic component which exceeds boance is <2D from the sampling plan is too near to the downstream distur- r/v ht, g/g mole g/m ³ s ime(s) (hhmm) plane, m/s , actual, m ³ /s (wet STP), m ³ /s	ving reasons: 15° e bance but is greater than o 17 27.4 (wet) 1.22 (wet) 1348 & 1835 56 329 12	pr equal to 1D 29.3 (dry)

Date	23/02/2021	Client	Borg Manufacturing Pty Ltd
Report	R010598	Stack ID	EPA 8 - Conti 2 Stage 1 Dryer Cyclone 2
			(East)
Licence No.	3035	Location	Oberon
Ektimo Staff	Steven Cooper & Ed Camilleri	State	NSW
Process Conditions	Please refer to client records.		2 112 19

Isokinetic Results	Results	
Sampling time	1544-1748	
	Concentration Mass Rate mg/m³ g/min	
Antimony	<0.004 <0.008	
Arsenic	0.0049 0.01	
Beryllium	<0.0005 <0.001	
Cadmium	<0.0004 <0.0008	
Chromium	0.013 0.027	
Cobalt	<0.0006 <0.001	
Lead	0.013 0.027	
Manganese	0.07 0.15	
Mercury	<0.0005 <0.001	
Nickel	0.0087 0.018	
Selenium	<0.004 <0.009	
Tin	0.0042 0.0088	
Vanadium	<0.001 <0.002	
Type 1 & 2 Substances		
Upper Bound		
Total Type 1 Substances	≤0.023 ≤0.047	
Total Type 2 Substances	≤0.1 ≤0.21	
Total Type 1 & 2 Substances	≤0.12 ≤0.26	
Isokinetic Sampling Parameters		
Sampling time, min	120	
Isokinetic rate, %	109	
Velocity difference, %	8	
Smoke Obscuration	Result	

Smoke Obscuration	Result
Time of assessment	1541-1601
Smoke Obscuration	0

2.5 EPA 9 – Conti 1 Dryer Cyclone 1 (South)

Date	3/03/2021	Client	Borg Manufacturing Pty Ltd
Report	R010598	Stack ID	EPA 9 - Conti 1 Dryer Cyclone 1 (South)
Licence No.	3035	Location	Oberon
Ektimo Staff	Steven Cooper & Aaron Davis	State	NSW
Process Conditions	Please refer to client records.		212
Sampling Plane Deta	ils		
Sampling plane dim	ensions	2230 mm	
Sampling plane area	I	3.91 m²	
Sampling port size, r	number	4" BSP (x2)	
Access & height of po	orts	Fixed ladder 25 m	
Duct orientation & s	hape	Vertical Circular	
Downstream disturb	ance	Exit 1 D	
Upstream disturband	ce	Junction 2 D	
No. traverses & poin	ts sampled	2 24	
Sample plane compl	iance to AS4323.1	Compliant but non-idea	il i
Comments			
Please note that in r	esponse to the cyclonic flow Borg	Manutacturing has a NSW FPA	approved method deviation to $\Delta S 4 3 / 3 / 1 $
	esponse to the cyclonic flow, Borg natter sampling at this location.	Manufacturing has a NSW EPA	approved method deviation to AS4323.2 to
		Manufacturing has a NSW EPA	approved method deviation to AS4323.2 to
conduct particulate r		-	approved method deviation to AS4323.2 to
conduct particulate r The sampling plane is	natter sampling at this location.	owing reasons:	approved method deviation to AS4323.2 to
conduct particulate r The sampling plane is The gas profile has a	natter sampling at this location. deemed to be non-ideal due to the foll	owing reasons: s 15°	approved method deviation to AS4323.2 to
conduct particulate r The sampling plane is The gas profile has a The highest to lowes	natter sampling at this location. deemed to be non-ideal due to the foll a cyclonic component which exceed	owing reasons: s 15° ds 9:1	approved method deviation to AS4323.2 to
conduct particulate r The sampling plane is The gas profile has a The highest to lowes The gas temperature	natter sampling at this location. deemed to be non-ideal due to the foll a cyclonic component which exceed at differential pressure ratio exceed	owing reasons: s 15° ds 9:1 e dew point	
conduct particulate r The sampling plane is The gas profile has a The highest to lowes The gas temperature The sampling plane	natter sampling at this location. deemed to be non-ideal due to the foll a cyclonic component which exceed st differential pressure ratio exceed of the sampling plane is below th	owing reasons: s 15° ds 9:1 e dew point urbance but is greater than or	r equal to 1D
conduct particulate r The sampling plane is The gas profile has a The highest to lowes The gas temperature The sampling plane The sampling plane	natter sampling at this location. deemed to be non-ideal due to the foll a cyclonic component which exceed st differential pressure ratio exceed of the sampling plane is below th is too near to the downstream dist	owing reasons: s 15° ds 9:1 e dew point urbance but is greater than or	r equal to 1D
conduct particulate r The sampling plane is The gas profile has a The highest to lowes The gas temperature The sampling plane	matter sampling at this location. deemed to be non-ideal due to the foll a cyclonic component which exceed at differential pressure ratio exceed of the sampling plane is below th is too near to the downstream dist is too near to the upstream disturk	owing reasons: s 15° ds 9:1 e dew point urbance but is greater than or	r equal to 1D
conduct particulate r The sampling plane is The gas profile has a The highest to lowes The gas temperature The sampling plane The sampling plane Stack Parameters	natter sampling at this location. deemed to be non-ideal due to the foll a cyclonic component which exceed at differential pressure ratio exceed of the sampling plane is below th is too near to the downstream dist is too near to the upstream disturk	owing reasons: s 15° ds 9:1 e dew point urbance but is greater than or oance but is greater than or eq	r equal to 1D
conduct particulate r The sampling plane is The gas profile has a The highest to lowes The gas temperature The sampling plane The sampling plane Stack Parameters Moisture content, % Gas molecular weigh	natter sampling at this location. deemed to be non-ideal due to the foll a cyclonic component which exceed at differential pressure ratio exceed of the sampling plane is below th is too near to the downstream dist is too near to the upstream disturk //v nt, g/g mole	owing reasons: s 15° ds 9:1 e dew point urbance but is greater than or pance but is greater than or eq 12	r equal to 1D gual to 2D
conduct particulate r The sampling plane is The gas profile has a The highest to lowes The gas temperature The sampling plane Stack Parameters Moisture content, % Gas molecular weigh Gas density at STP, k	matter sampling at this location. deemed to be non-ideal due to the foll a cyclonic component which exceed t differential pressure ratio exceed of the sampling plane is below th is too near to the downstream dist is too near to the upstream disturk //v nt, g/g mole g/m ³	owing reasons: s 15° ds 9:1 e dew point urbance but is greater than or pance but is greater than or eq 12 27.8 (wet)	r equal to 1D qual to 2D 29.1 (dry)
conduct particulate r The sampling plane is The gas profile has a The highest to lowes The gas temperature The sampling plane Stack Parameters Moisture content, % Gas molecular weigh Gas density at STP, k Gas Flow Parameters	matter sampling at this location. deemed to be non-ideal due to the foll a cyclonic component which exceed to differential pressure ratio exceed of the sampling plane is below th is too near to the downstream dist is too near to the upstream disturk //v nt, g/g mole g/m ³	owing reasons: s 15° ds 9:1 e dew point urbance but is greater than or pance but is greater than or eq 12 27.8 (wet)	r equal to 1D qual to 2D 29.1 (dry)
conduct particulate r The sampling plane is The gas profile has a The highest to lowes The gas temperature The sampling plane Stack Parameters Moisture content, % Gas molecular weigh Gas density at STP, k Gas Flow Parameter Flow measurement t	matter sampling at this location. deemed to be non-ideal due to the foll a cyclonic component which exceed to differential pressure ratio exceed of the sampling plane is below th is too near to the downstream dist is too near to the upstream disturk //v nt, g/g mole g/m ³	owing reasons: s 15° ds 9:1 e dew point curbance but is greater than or pance but is greater than or eq 12 27.8 (wet) 1.24 (wet)	r equal to 1D qual to 2D 29.1 (dry)
conduct particulate r The sampling plane is The gas profile has a The highest to lowes The gas temperature The sampling plane Stack Parameters Moisture content, % Gas molecular weigh Gas density at STP, k Gas Flow Parameter Flow measurement t Temperature, °C	matter sampling at this location. deemed to be non-ideal due to the foll a cyclonic component which exceed to differential pressure ratio exceed of the sampling plane is below th is too near to the downstream dist is too near to the upstream disturk //v nt, g/g mole g/m ³	owing reasons: s 15° ds 9:1 e dew point urbance but is greater than or pance but is greater than or eq 12 27.8 (wet) 1.24 (wet) 1401 & 1635	r equal to 1D qual to 2D 29.1 (dry)
conduct particulate r The sampling plane is The gas profile has a The highest to lowes The gas temperature The sampling plane The sampling plane Stack Parameters Moisture content, % Gas molecular weigh Gas density at STP, k Gas Flow Parameter Flow measurement t Temperature, °C Temperature, K	matter sampling at this location. deemed to be non-ideal due to the foll a cyclonic component which exceed to differential pressure ratio exceed of the sampling plane is below th is too near to the downstream dist is too near to the upstream disturk n/v nt, g/g mole g/m ³ s ime(s) (hhmm)	owing reasons: s 15° ds 9:1 e dew point turbance but is greater than or bance but is greater than or eq 12 27.8 (wet) 1.24 (wet) 1401 & 1635 53	r equal to 1D qual to 2D 29.1 (dry)
conduct particulate r The sampling plane is The gas profile has a The highest to lowes The gas temperature The sampling plane The sampling plane Stack Parameters Moisture content, % Gas molecular weigh Gas density at STP, k Gas Flow Parameter: Flow measurement t Temperature, °C Temperature, K Velocity at sampling	matter sampling at this location. deemed to be non-ideal due to the foll a cyclonic component which exceed of the sampling plane is below th is too near to the downstream dist is too near to the upstream disturk n/v nt, g/g mole g/m ³ s ime(s) (hhmm) plane, m/s	owing reasons: s 15° ds 9:1 e dew point urbance but is greater than or pance but is greater than or eq 12 27.8 (wet) 1.24 (wet) 1401 & 1635 53 326	r equal to 1D qual to 2D 29.1 (dry)
conduct particulate r The sampling plane is The gas profile has a The highest to lowes The gas temperature The sampling plane The sampling plane Stack Parameters Moisture content, % Gas molecular weigh Gas density at STP, k Gas Flow Parameter: Flow measurement t Temperature, °C Temperature, K Velocity at sampling Volumetric flow rate	matter sampling at this location. deemed to be non-ideal due to the foll a cyclonic component which exceed is the sampling plane is below th is too near to the downstream dist is too near to the upstream disturk n/v nt, g/g mole g/m ³ s ime(s) (hhmm) plane, m/s , actual, m ³ /s	owing reasons: s 15° ds 9:1 e dew point urbance but is greater than or pance but is greater than or eq 12 27.8 (wet) 1.24 (wet) 1401 & 1635 53 326 12	r equal to 1D qual to 2D 29.1 (dry)
conduct particulate r The sampling plane is The gas profile has a The highest to lowes The gas temperature The sampling plane The sampling plane Stack Parameters Moisture content, %	matter sampling at this location. deemed to be non-ideal due to the foll a cyclonic component which exceed of the sampling plane is below th is too near to the downstream dist is too near to the upstream disturk n/v nt, g/g mole g/m ³ s ime(s) (hhmm) plane, m/s , actual, m ³ /s (wet STP), m ³ /s	owing reasons: s 15° ds 9:1 e dew point urbance but is greater than or pance but is greater than or eq 12 27.8 (wet) 1.24 (wet) 1401 & 1635 53 326 12 47	r equal to 1D qual to 2D 29.1 (dry)

D.1.	2/02/2024						
Date	3/03/2021			Client		cturing Pty Ltd	1 (C+ h)
Report	R010598			Stack ID		1 Dryer Cyclone	I (South)
Licence No.	3035			Location	Oberon		
Ektimo Staff	Steven Cooper & Aar			State	NSW		
Process Conditions	Please refer to clien	t records.					2 112 19
Gas Analyser Results		Aver	age	Min	mum	Maxir	num
	Samplingtime	1412 -	0		- 1526	1412 -	
	Sumpling time	1412	1520	1412	1520	1412	1520
		Concentration	Mass Rate	Concentration	Mass Rate	Concentration	Mass Rate
Combustion Gases		mg/m³	g/min	mg/m³	g/min	mg/m³	g/min
Nitrogen oxides (as NO ₂)		260	470	94	170	310	570
		Concentration		Concentration		Concentration	
		%v/v		%v/v		%v/v	
Carbon dioxide		1.3		1.1		1.4	
Oxygen		19.8		19.6		20	
		•		•		•	
Formaldehyde				Res	ults		
	Samplingtime			1430	-1530		
				Concentration	Mass Rate		
				mg/m³	g/min		
Formaldehyde				4.8	8.8		
		•					
Isokinetic Results				Res	ults		
	Samplingtime			1428-1632 14	28-1632 (PM10)		
				Concentration	Mass Rate		
				mg/m³	g/min		
Solid Particles				38	67		
Fine particulates (PM10)				26	46		
D50 cut size, 10µm				g	.8		
Isokinetic Sampling Param	eters			Isokinetic	PM 10		
Sampling time, min				120	120		
Isokinetic rate, %				97	94		
Velocity difference, %				-4	-4		
		1					
Smoke Obscuration					sult		
	Time of assessment				-1445		
Smoke Obscuration					0		

2.6 EPA 10 – Conti 1 Dryer Cyclone 2 (North)

Date	3/03/2021	Client	Borg Manufacturing Pty Ltd
Report	R010598	Stack ID	EPA 10 - Conti 1 Dryer Cyclone 2 (North)
Licence No.	3035	Location	Oberon
Ektimo Staff	Steven Cooper & Aaron Davis	State	NSW
Process Conditions	Please refer to client records.		2 112 19
Sampling Plane Deta	ils		
Sampling plane dim	ensions	2230 mm	
Sampling plane area	1	3.91 m²	
Sampling port size, r	number	4" BSP (x2)	
Access & height of p	orts	Fixed ladder 25 m	
Duct orientation & s	hape	Vertical Circular	
Downstream disturb	ance	Exit 1 D	
Upstream disturban	ce	Junction 2 D	
No. traverses & poin	ts sampled	2 24	
Sample plane compl	iance to AS4323.1	Compliant but non-idea	al
Comments Please note that in r	esponse to the cyclonic flow, Borg N	lanufacturing has a NSW EPA	approved method deviation to AS4323.2 to
Please note that in r conduct particulate r The sampling plane is The gas profile has a The highest to lowes The gas temperature The sampling plane The sampling plane	esponse to the cyclonic flow, Borg M matter sampling at this location. deemed to be non-ideal due to the follo a cyclonic component which exceeds at differential pressure ratio exceeds of the sampling plane is below the is too near to the downstream disturba	wing reasons: 15° 5 9:1 dew point rbance but is greater than of	r equal to 1D
Please note that in r conduct particulate r The sampling plane is The gas profile has a The highest to lowes The gas temperature The sampling plane The sampling plane Stack Parameters	matter sampling at this location. deemed to be non-ideal due to the follo a cyclonic component which exceeds at differential pressure ratio exceeds of the sampling plane is below the is too near to the downstream disturba	wing reasons: 15° 5 9:1 dew point rbance but is greater than or ince but is greater than or ec	r equal to 1D
Please note that in r conduct particulate r The sampling plane is The gas profile has a The highest to lowes The gas temperature The sampling plane The sampling plane Stack Parameters Moisture content, %	matter sampling at this location. deemed to be non-ideal due to the follo a cyclonic component which exceeds st differential pressure ratio exceeds of the sampling plane is below the is too near to the downstream disturban is too near to the upstream disturban //v	wing reasons: 15° 5 9:1 dew point rbance but is greater than or ince but is greater than or economic nce but is greater than or economic 15	r equal to 1D qual to 2D
Please note that in r conduct particulate r The sampling plane is The gas profile has a The highest to lowes The gas temperature The sampling plane The sampling plane Stack Parameters Moisture content, % Gas molecular weigh	matter sampling at this location. deemed to be non-ideal due to the follo a cyclonic component which exceeds st differential pressure ratio exceeds of the sampling plane is below the is too near to the downstream disturban is too near to the upstream disturban //v nt, g/g mole	wing reasons: 15° 5 9:1 dew point rbance but is greater than or ince but is greater than or ec 15 27.4 (wet)	r equal to 1D qual to 2D 29.1 (dry)
Please note that in r conduct particulate r The sampling plane is The gas profile has a The highest to lowes The gas temperature The sampling plane The sampling plane Stack Parameters Moisture content, %	matter sampling at this location. deemed to be non-ideal due to the follo a cyclonic component which exceeds st differential pressure ratio exceeds of the sampling plane is below the is too near to the downstream disturban is too near to the upstream disturban //v nt, g/g mole	wing reasons: 15° 5 9:1 dew point rbance but is greater than or ince but is greater than or economic nce but is greater than or economic 15	r equal to 1D qual to 2D
Please note that in r conduct particulate r The sampling plane is The gas profile has a The highest to lowes The gas temperature The sampling plane The sampling plane Stack Parameters Moisture content, % Gas molecular weigh	matter sampling at this location. deemed to be non-ideal due to the follo a cyclonic component which exceeds st differential pressure ratio exceeds of the sampling plane is below the is too near to the downstream disturbance is too near to the upstream disturbance //v nt, g/g mole g/m ³	wing reasons: 15° 5 9:1 dew point rbance but is greater than or ince but is greater than or ec 15 27.4 (wet)	r equal to 1D qual to 2D 29.1 (dry)
Please note that in r conduct particulate r The sampling plane is The gas profile has a The highest to lowes The gas temperature The sampling plane The sampling plane Stack Parameters Moisture content, % Gas molecular weigh Gas density at STP, k	matter sampling at this location. deemed to be non-ideal due to the follo a cyclonic component which exceeds st differential pressure ratio exceeds of the sampling plane is below the is too near to the downstream disturbance is too near to the upstream disturbance n/v nt, g/g mole g/m ³	wing reasons: 15° 5 9:1 dew point rbance but is greater than or ince but is greater than or ec 15 27.4 (wet)	r equal to 1D qual to 2D 29.1 (dry)
Please note that in r conduct particulate r The sampling plane is The gas profile has a The highest to lowes The gas temperature The sampling plane The sampling plane Stack Parameters Moisture content, % Gas molecular weigh Gas density at STP, k Gas Flow Parameter Flow measurement t	matter sampling at this location. deemed to be non-ideal due to the follo a cyclonic component which exceeds st differential pressure ratio exceeds of the sampling plane is below the is too near to the downstream disturbance is too near to the upstream disturbance n/v nt, g/g mole g/m ³	wing reasons: 15° 5 9:1 dew point rbance but is greater than or ince but is greater than or ec 15 27.4 (wet) 1.22 (wet)	r equal to 1D qual to 2D 29.1 (dry)
Please note that in r conduct particulate r The sampling plane is The gas profile has a The highest to lowes The gas temperature The sampling plane The sampling plane Stack Parameters Moisture content, % Gas molecular weigh Gas density at STP, k Gas Flow Parameter Flow measurement t Temperature, °C	matter sampling at this location. deemed to be non-ideal due to the follo a cyclonic component which exceeds st differential pressure ratio exceeds of the sampling plane is below the is too near to the downstream disturbance is too near to the upstream disturbance n/v nt, g/g mole g/m ³	wing reasons: 15° 5 9:1 dew point rbance but is greater than or ince but is greater than or ec 15 27.4 (wet) 1.22 (wet) 1155 & 1422	r equal to 1D qual to 2D 29.1 (dry)
Please note that in r conduct particulate r The sampling plane is The gas profile has a The highest to lowes The gas temperature The sampling plane The sampling plane Stack Parameters Moisture content, % Gas molecular weigh Gas density at STP, k	matter sampling at this location. deemed to be non-ideal due to the follo a cyclonic component which exceeds st differential pressure ratio exceeds of the sampling plane is below the is too near to the downstream distui- is too near to the upstream disturban n/v nt, g/g mole g/m ³ s time(s) (hhmm)	wing reasons: 15° 5 9:1 dew point rbance but is greater than or ince but is greater than or ec 15 27.4 (wet) 1.22 (wet) 1155 & 1422 58	r equal to 1D qual to 2D 29.1 (dry)
Please note that in r conduct particulate r The sampling plane is The gas profile has a The highest to lowes The gas temperature The sampling plane The sampling plane Stack Parameters Moisture content, % Gas molecular weig! Gas density at STP, k Gas Flow Parameter Flow measurement to Temperature, °C Temperature, K Velocity at sampling	matter sampling at this location. deemed to be non-ideal due to the follo a cyclonic component which exceeds st differential pressure ratio exceeds so f the sampling plane is below the is too near to the downstream distu- is too near to the upstream disturbance n/v nt, g/g mole g/m ³ s time(s) (hhmm)	wing reasons: 15° 5 9:1 dew point rbance but is greater than or ince but is greater than or ec 15 27.4 (wet) 1.22 (wet) 1155 & 1422 58 331	r equal to 1D qual to 2D 29.1 (dry)
Please note that in r conduct particulate r The sampling plane is The gas profile has a The highest to lowes The gas temperature The sampling plane The sampling plane Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, k Gas Flow Parameter Flow measurement t Temperature, °C Temperature, K	matter sampling at this location. deemed to be non-ideal due to the follo a cyclonic component which exceeds st differential pressure ratio exceeds so f the sampling plane is below the is too near to the downstream distu- is too near to the upstream disturbance n/v nt, g/g mole g/m ³ s time(s) (hhmm) plane, m/s , actual, m ³ /s	wing reasons: 15° 5 9:1 dew point rbance but is greater than or ince but is greater than or ex- 15 27.4 (wet) 1.22 (wet) 1155 & 1422 58 331 13	r equal to 1D qual to 2D 29.1 (dry)
Please note that in r conduct particulate r The sampling plane is The gas profile has a The highest to lowes The gas temperature The sampling plane The sampling plane Stack Parameters Moisture content, % Gas molecular weig! Gas density at STP, k Gas Flow Parameter Flow measurement to Temperature, °C Temperature, K Velocity at sampling Volumetric flow rate	matter sampling at this location. deemed to be non-ideal due to the follo a cyclonic component which exceeds st differential pressure ratio exceeds so f the sampling plane is below the is too near to the downstream distu- is too near to the upstream disturbance n/v nt, g/g mole g/m ³ s time(s) (hhmm) plane, m/s , actual, m ³ /s (wet STP), m ³ /s	wing reasons: 15° 5 9:1 dew point rbance but is greater than or ince but is greater than or ex- 15 27.4 (wet) 1.22 (wet) 1155 & 1422 58 331 13 53	r equal to 1D qual to 2D 29.1 (dry)

Report R010593 Stack ID EPA 10 - Contil 1 Dryer Cyclone 2 (North) Location Ober on Other NSW Process Conditions Please refer to client records. 21200 Gas Analyser Results Average 1218 - 1335 Minimum 1218 - 1335 Maximum 1218 - 1335 Combustion Gases Sampling time mg/m Average 1218 - 1335 Minimum 1218 - 1335 Maximum 1218 - 1335 Concentration Witrogen oxides (as NO ₂) Concentration %v/v Mass Rate mg/m 500 Concentration %v/v Concentration %v/v Mass Rate mg/m 00 Concentration %v/v %v/v 0.8 0.7 1 0.0 Concentration %v/v 0.0 Carbon dioxide 0.8 0.7 19.9 1 20.3 Formaldehyde 4.7 9 1 20.3 Formaldehyde 4.7 9 1 20.0 Solid Particles Sampling time fine particulates (PM10) 27 52 20.0 Solid Particles 10.0 10.0 10.0 10.0 Sokinetic Sampling time, min sokinetic Sampling time, min sokinetic Care, % 1.20 119 10.0	Dut	2/02/2024				D		
Licence No. 3035 Setven Cooper & Aaron Davis Prease refer to Client records. State NSW Prease refer to Client records. State NSW Prease refer to Client records. State NSW Prease refer to Client records. State NSW Samplingtime 1218-1335 Concentration Mass Rate mg/m ³ g/min 1218-1335 Concentration Mass Rate mg/m ³ g/min 110 200 Concentration Mass Rate mg/m ³ g/min 1224-1324 Concentration Mass Rate mg/m ³ g/min 1224-1324 Concentration Mass Rate mg/m ³ g/min 1224-1324 Concentration Mass Rate mg/m ³ g/min 1224-1324 Concentration Mass Rate mg/m ³ g/min 1215-1418 1215-1418 (PM10) Concentration Mass Rate mg/m ³ g/min 1215-1418 1215-1418 (PM10) Concentration Mass Rate mg/m ³ g/min 1210 200 Concentration Mass Rate mg/m ³ g/min 1215-1418 (PM10) Concentration Mass Rate mg/m ³ g/min 120 119 Loo Velocity difference, % Concentrate, % Concentrate PM to Sampling time, 1220 119 Loo Velocity difference, % Concentrate, % Concentrate PM to Presult	Date	3/03/2021			Client			(N) = (t + t)
Extimo Staff Process Condition Staven Cooper & Aaron Davis Please refer to client records. State NSW Gas Analyser Results Sampling time Average 1218-1335 Minimum 1218-1335 Maximum 1218-1335 Combustion Gases Nitrogen oxides (as NO2) Concentration 0,000 Mass Rate mg/m ³ Mass Rate mg/m ³ Concentration 110 Concentration 200 Carbon dioxide 0,8 0,7 1 20.3 Carbon dioxide 0,8 0,7 1 20.3 Commaldehyde 0.8 0.7 1 20.3 Formaldehyde Sampling time Results 1224-1324 Sampling time Sampling time Formaldehyde Sampling time 1215-1418 1215-1418 1215-1418 Solid Particles Fine particulates (PM10) 27 52 Solid Particles Sampling time, min 120 110 20 Sokinetic Sampling time, min 120 10.0 10.0 Isokinetic Sampling time, min 120 119 10.0							I 1 Dryer Cyclone	e 2 (North)
Process Conditions Please refer to client records. Description Description <thdescription< th=""> Description</thdescription<>								
Gas Analyser Results Average 1218-1335 Minimum 1218-1335 Maximum 1218-1335 Combustion Gases Nitrogen oxides (as NO ₂) Concentration mg/m ² Sw/v Mass Rate mg/m ² Sw/v Concentration Sw/v Mass Rate mg/m ² Sw/v Concentration Sw/v Mass Rate mg/m ² Sw/v Concentration Sw/v Mass Rate mg/m ² Sw/v Concentration Sw/v Concentration Sw/v Mass Rate mg/m ² Sw/v Concentration Sw/v Concentr					State	NSW		
Sampling time 1218-1335 1218-1335 1218-1335 Concentration Mass Rate mg/m ³ Goncentration <	Process Conditions	Please refer to clien	t records.					2 112 19
Sampling time 1218-1335 1218-1335 1218-1335 Concentration Mass Rate mg/m ³ Goncentration <	Gas Analyser Results		Aver	age	Mini	mum	Maxir	num
Conduction Gases Nitrogen oxides (as NO ₂) Concentration mg/m ² Mass Rate mg/m ² Concentration %u/v Mass Rate mg/m ² Conc	dus Andryser Results	Samplingtime		0			-	
Combustion Gases Nitrogen oxides (as NO2) mg/m³ g/min 73 mg/m³ g/min 53 mg/m³ g/min 53 mg/m³ g/min 53 mg/m³ g/min 53 mg/m³ g/min 110 200 Concentration %v/v 0.0 Concentration %v/v Concentration %v/v Concentration %v/v Concentration %v/v Concentration %v/v Concentration %v/v Concentration %v/v Concentration %v/v V Concentration %v/v V Concentration %v/v V Concentration %v/v V Concentration %v/v V Concentration %v/v V		Sumpling time	1210	1999	1210	1555	1210	1999
Combustion Gases Nitrogen oxides (as NO2) mg/m³ g/min 73 mg/m³ g/min 53 mg/m³ g/min 53 mg/m³ g/min 53 mg/m³ g/min 53 mg/m³ g/min 110 200 Concentration %v/v 0.0 Concentration %v/v Concentration %v/v Concentration %v/v Concentration %v/v Concentration %v/v Concentration %v/v Concentration %v/v Concentration %v/v V Concentration %v/v V Concentration %v/v V Concentration %v/v V Concentration %v/v V Concentration %v/v V			Concentration	Mass Rate	Concentration	Mass Rate	Concentration	Mass Rate
Nitrogen oxides (as NO2) 73 140 53 100 110 200 Concentration %v/v Sw/v I	Combustion Gases			g/min		g/min		g/min
Concentration %v/v Concentration %v/v Concentration %v/v Concentration %v/v 0.8 0.7 1 20.1 19.9 20.3 Formaldehyde Sampling time Results Concentration Sampling time 1224-1324 Concentration Mass Rate mg/m ³ g/min Grini Formaldehyde Formaldehyde Results Sampling time 1215-1418 (PM10) Concentration Mass Rate mg/m ³ g/min Grini Solid Particles Fine particulates (PM10) So cut size, 10µm Solid Partices Sampling time, min Solid Pa)	73	140	53	100	110	200
%w/v %w/v %w/v %w/v Carbon dioxide 0.8 0.7 1 Dxygen 20.1 19.9 20.3 Formaldehyde Formaldehyde Results Sampling time 1224-1324 Formaldehyde Concentration Mass Rate mg/m³ g/min Formaldehyde Sokinetic Results Results Sampling time 1215-1418 Solid Particles Fine particulates (PM10) D50 cut size, 10µm Sokinetic Sampling Parameters Isokinetic Sampling time, min 120 Stokinetic rate, % Velocity difference, % Solid Particles 10.0 Sonoke Obscuration Result	0		-					
Daygen 20.1 19.9 20.3 Formaldehyde Results 1224-1324 Sampling time 1224-1324 Concentration Mass Rate mg/m³ g/min 4.7 9 Isokinetic Results Sampling time 1215-1418 Sampling time Solid Particles Fine particulates (PM10) D50 cut size, 10µm 10.0 Isokinetic Results Sampling time, min Isokinetic rate, % 100 Velocity difference, % -9 Sinoke Obscuration								
Daygen 20.1 19.9 20.3 Formaldehyde Results 1224-1324 Sampling time 1224-1324 Concentration Mass Rate mg/m³ g/min 4.7 9 Isokinetic Results Sampling time 1215-1418 Sampling time Solid Particles Fine particulates (PM10) D50 cut size, 10µm 10.0 Isokinetic Results Sampling time, min Isokinetic rate, % 100 Velocity difference, % -9 Sinoke Obscuration	Carbon dioxide		0.8		0.7		1	
Formaldehyde Results Formaldehyde Results Formaldehyde 4.7 Formaldehyde 4.7 Sampling time Results Isokinetic Results Results Sampling time 1215-1418 (PM10) Concentration Mass Rate mg/m³ g/min 1215-1418 1215-1418 (PM10) Concentration Mass Rate mg/m³ g/min Solid Particles 41 Fine particulates (PM10) 27 D50 cut size, 10µm 10.0 Isokinetic Sampling Parameters Isokinetic Sampling time, min 120 Isokinetic rate, % -9 -9 -9 Smoke Obscuration Result					-			
Sampling time 1224-1324 Concentration Mass Rate mg/m³ g/min Formaldehyde 4.7 9 Isokinetic Results Results Sampling time 1215-1418 1215-1418 (PM10) Concentration Mass Rate mg/m³ g/min 1215-1418 1215-1418 (PM10) Solid Particles Fine particulates (PM10) D50 cut size, 10µm Isokinetic Sampling Parameters Isokinetic Sampling Parameters Isokinetic rate, % Velocity difference, % 9 -9 -9 Isokinetic rate, % 100 90 Velocity difference, %	- 70							
Sampling time 1224-1324 Concentration Mass Rate mg/m³ g/min formaldehyde 4.7 9 Sokinetic Results Sampling time 1215-1418 (PM10) Concentration Mass Rate mg/m³ g/min Solid Particles Fine particulates (PM10) D50 cut size, 10µm Sokinetic Sampling Parameters Sampling time, min Isokinetic rate, % Velocity difference, % -9 -9 Smoke Obscuration Result	Formaldehvde				Res	ults		
Formaldehyde 4.7 9 Isokinetic Results Sampling time Solid Particles Fine particulates (PM10) D50 cut size, 10µm Solime Solid Parameters Sampling time, min Solid Parameters Sonoke Obscuration Result	· · · · · / · ·	Samplingtime			1224	-1324		
Formaldehyde 4.7 9 Isokinetic Results Sampling time Solid Particles Fine particulates (PM10) D50 cut size, 10µm Solime Solid Parameters Sampling time, min Solid Parameters Sonoke Obscuration Result		1 0						
Formaldehyde 4.7 9 Isokinetic Results Sampling time Solid Particles Fine particulates (PM10) D50 cut size, 10µm Solime Solid Parameters Sampling time, min Solid Parameters Sonoke Obscuration Result					Concentration	Mass Rate		
Isokinetic Results Sampling time Results Sampling time Solid Particles Fine particulates (PM10) Concentration Mass Rate mg/m³ g/min 41 79 27 52 D50 cut size, 10μm Isokinetic Sampling Parameters Sampling time, min Isokinetic rate, % Yelocity difference, % Result								
Isokinetic Results Sampling time Results Sampling time Solid Particles Fine particulates (PM10) Concentration Mass Rate mg/m³ g/min 41 79 27 52 D50 cut size, 10μm Isokinetic Sampling Parameters Sampling time, min Isokinetic rate, % Yelocity difference, % Result	Formaldehyde				4.7	9		
Sampling time 1215-1418 1215-1418 (PM10) Concentration Mass Rate mg/m³ g/min Solid Particles Fine particulates (PM10) D50 cut size, 10µm Isokinetic Sampling Parameters Sampling time, min Isokinetic rate, % Velocity difference, % Somoke Obscuration Result	. official deligate					5		
Concentration Mass Rate mg/m³ Solid Particles 41 Fine particulates (PM10) 27 D50 cut size, 10µm 10.0 Isokinetic Sampling Parameters Isokinetic Sampling time, min 120 Isokinetic rate, % -9 Velocity difference, % -9	Isokinetic Results				Res	ults		
Concentration Mass Rate mg/m³ Solid Particles 41 Fine particulates (PM10) 27 D50 cut size, 10µm 10.0 Isokinetic Sampling Parameters Isokinetic Sampling time, min 120 Isokinetic rate, % -9 Velocity difference, % -9		Sampling time			1215-1418 12	15-1418 (PM10)		
mg/m³g/minSolid Particles4179Fine particulates (PM10)2752D50 cut size, 10µm10.010.0Isokinetic Sampling ParametersIsokineticPM10Sampling time, min120119Isokinetic rate, %10090Velocity difference, %-9-9Smoke Obscuration						(-)		
mg/m³g/minSolid Particles4179Fine particulates (PM10)2752D50 cut size, 10µm10.010.0Isokinetic Sampling ParametersIsokineticPM10Sampling time, min120119Isokinetic rate, %10090Velocity difference, %-9-9Smoke Obscuration					Concentration	Mass Rate		
Fine particulates (PM10) 27 52 10.0 250 cut size, 10µm 27 52 10.0 250 cut size, 10µm 27 52 10.0 250 cut size, 10µm 250 cut size								
Fine particulates (PM10) 27 52 10.0 250 cut size, 10µm 27 52 10.0 250 cut size, 10µm 27 52 10.0 250 cut size, 10µm 250 cut size	Solid Particles				41	79		
D50 cut size, 10μm Isokinetic Sampling Parameters Sampling time, min Isokinetic rate, % Velocity difference, % -9 -9 -9 -9 -9								
Isokinetic Sampling Parameters Isokinetic PM 10 Sampling time, min 120 119 Isokinetic rate, % 100 90 Velocity difference, % -9 -9								
Sampling time, min 120 119 Isokinetic rate, % 100 90 Velocity difference, % -9 -9					1			
Sampling time, min 120 119 Isokinetic rate, % 100 90 Velocity difference, % -9 -9								
Sampling time, min 120 119 Isokinetic rate, % 100 90 Velocity difference, % -9 -9	Isokinetic Sampling Param	eters			lsokinetic	PM 10		
Isokinetic rate, % 100 90 Velocity difference, % -9 -9 Smoke Obscuration Result	Sampling time, min	-						
Velocity difference, % -9 -9 Smoke Obscuration Result								
Smoke Obscuration Result								
	·/····································					-		
Time of assessment 1220 - 1240	Smoke Obscuration				Re	sult		
		Time of assessment			1220	- 1240		
	Smoke Obscuration					0		

2.7 *EPA* **12** – *Conti* **1** *Press Vent* **1**

Date	5/03/2021	Client	Borg Manufacturing Pty Ltd	
Report	R010598	Stack ID	EPA 12 - Conti 1 Press Vent 1	
Licence No.	3035	Location	Oberon	
Ektimo Staff	Steven Cooper & Aaron Davis	State	NSW	
Process Conditions	Please refer to client records.			2 112 19
Sampling Plane Deta	ils			
Sampling plane dime		600 mm		
Sampling plane area		0.283 m ²		
Sampling port size, n		4" BSP (x2)		
Access & height of po		Stairs 20 m		
Duct orientation & s	hape	Horizontal Circular		
Downstream disturb	ance	Exit 5 D		
Upstream disturband	e	Bend 6 D		
No. traverses & point	s sampled	2 8		
Sample plane compl	iance to AS4323.1	Ideal		
Stack Parameters				
Moisture content, %v	/v	1		
Gas molecular weigh	it, g/g mole	28.9 (wet)	29.0 (dry)	
Gas density at STP, k	g/m³	1.29 (wet)	1.29 (dry)	
Gas Flow Parameters	5			
Flow measurement t	ime(s) (hhmm)	1158 & 1308		
Temperature, °C		66		
Temperature, K		339		
Velocity at sampling	plane, m/s	5.1		
Volumetric flow rate	actual, m³/s	1.4		
Volumetric flow rate	(wet STP), m³/s	1		
Volumetric flow rate	(dry STP), m³/s	1		
Mass flow rate (wet	basis). kg/hour	4700		

Gas Analyser Results		Average		Minimum		Maximum	
	Samplingtime	1205 - 1304		1205 - 1304		1205 - 1304	
Combustion Gases		Concentration mg/m³	Mass Rate g/min	Concentration mg/m ³	Mass Rate g/min	Concentration mg/m ³	Mass Rate g/min
Nitrogen oxides (as NO ₂)		<4	<0.2	<4	<0.2	<4	<0.2
		Concentration %v/v		Concentration %v/v		Concentration %v/v	
Carbon dioxide		<0.4		<0.4		<0.4	
Oxygen		20.9		20.9		20.9	

Date	5/03/2021	Client	Borg Manufacturing Pty Ltd
Report	R010598	Stack ID	EPA 12 - Conti 1 Press Vent 1
Licence No.	3035	Location	Oberon
Ektimo Staff	Steven Cooper & Aaron Davis	State	NSW
Process Conditions	Please refer to client records.		21219
Formaldehyde		R	esults
	Sampling time	12	00-1300
		Concentratic mg/m³	on Mass Rate g/min
Formaldehyde		5.4	0.33
Isokinetic Results		D	esults
ISOKINETIC RESULTS	Sampling time		L200-1306 (PM10)
		1200 1000 1	
		Concentratio	on Mass Rate
		mg/m³	g/min
Solid Particles		3.3	0.2
Fine particulates (PN	/10)	<3	<0.2
D50 cut size, 10μm			10.8
Isokinetic Sampling Pa	rameters	Isokinetic	P M 10
Sampling time, min		64	65
Isokinetic rate, %		99	98
Velocity difference, 9	%	2	2

2.8 EPA 12 – Conti 1 Press Vent 2

Date	5/03/2021	Clien		Nanufacturing Pty Ltd	
Report	R010598	Stack	ID EPA 12	- Conti 1 Press Vent 2	
Licence No.	3035	Locat	i on Obero	n	
Ektimo Staff	Steven Cooper & Aaron I	Davis State	NSW		
Process Conditions	Please refer to client re-	cords.			2 112
Compling Plane Date	:1-				
Sampling Plane Deta		600			
Sampling plane dim		600 mm 0.283 m²			
Sampling plane area					
Sampling port size, r		4" BSP (x2)			
Access & height of p		Stairs 20 m Horizontal Circu			
Duct orientation & s	•		lar		
Downstream disturb		Exit 5 D			
Upstream disturban		Bend 6 D			
No. traverses & poin		28			
Sample plane compl	iance to AS4323.1	Compliant but no	n-Ideal		
Comments The sampling plane is	deemed to be non-ideal due to t ome or all sampling points is	_			
Comments The sampling plane is	deemed to be non-ideal due to t ome or all sampling points is	_			
Comments The sampling plane is The gas velocity at so		_			
Comments The sampling plane is The gas velocity at su Stack Parameters	ome or all sampling points is	_			
Comments The sampling plane is The gas velocity at su Stack Parameters Moisture content, %	ome or all sampling points is	s less than 3 m/s	29.0	(dry)	
Comments The sampling plane is The gas velocity at so Stack Parameters Moisture content, % Gas molecular weigh	ome or all sampling points is //v nt, g/g mole	s less than 3 m/s		(dry) (dry)	
Comments The sampling plane is The gas velocity at so Stack Parameters Moisture content, % Gas molecular weigh Gas density at STP, k	ome or all sampling points is //v nt, g/g mole g/m³	1.2 28.9 (wet)			
Comments The sampling plane is The gas velocity at so Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, k Gas Flow Parameter	ome or all sampling points is //v nt, g/g mole g/m ³ s	1.2 28.9 (wet) 1.29 (wet)			
Comments The sampling plane is The gas velocity at so Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, k Gas Flow Parameter Flow measurement t	ome or all sampling points is //v nt, g/g mole g/m ³ s	1.2 28.9 (wet) 1.29 (wet) 1.29 (wet) 1040 & 1148			
Comments The sampling plane is The gas velocity at so Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, k Gas Flow Parameter Flow measurement t Temperature, °C	ome or all sampling points is //v nt, g/g mole g/m ³ s	1.2 28.9 (wet) 1.29 (wet) 1.29 (wet) 1040 & 1148 40			
Comments The sampling plane is The gas velocity at so Stack Parameters Moisture content, % Gas molecular weigl Gas density at STP, k Gas Flow Parameter Flow measurement t Temperature, °C Temperature, K	ome or all sampling points is //v nt, g/g mole g/m ³ s :ime(s) (hhmm)	1.2 28.9 (wet) 1.29 (wet) 1040 & 1148 40 313			
Comments The sampling plane is The gas velocity at so Stack Parameters Moisture content, % Gas molecular weigl Gas density at STP, k Gas Flow Parameter Flow measurement to Temperature, °C Temperature, K Velocity at sampling	ome or all sampling points is //v nt, g/g mole g/m ³ s cime(s) (hhmm) plane, m/s	1.2 28.9 (wet) 1.29 (wet) 1040 & 1148 40 313 2.8			
Comments The sampling plane is The gas velocity at sa Stack Parameters Moisture content, % Gas molecular weigl Gas density at STP, k Gas Flow Parameter Flow measurement to Temperature, °C Temperature, K Velocity at sampling Volumetric flow rate	ome or all sampling points is //v nt, g/g mole g/m ³ s time(s) (hhmm) plane, m/s , actual, m ³ /s	1.2 28.9 (wet) 1.29 (wet) 1040 & 1148 40 313 2.8 0.8			
Comments The sampling plane is The gas velocity at so Stack Parameters Moisture content, % Gas molecular weigl Gas density at STP, k Gas Flow Parameter Flow measurement t Temperature, °C Temperature, K Velocity at sampling Volumetric flow rate	ome or all sampling points is //v nt, g/g mole g/m ³ s time(s) (hhmm) plane, m/s , actual, m ³ /s (wet STP), m ³ /s	1.2 28.9 (wet) 1.29 (wet) 1040 & 1148 40 313 2.8 0.8 0.61			
Comments The sampling plane is The gas velocity at so Stack Parameters Moisture content, % Gas molecular weigl Gas density at STP, k Gas Flow Parameter Flow measurement t Temperature, °C Temperature, K Velocity at sampling Volumetric flow rate Volumetric flow rate	ome or all sampling points is //v nt, g/g mole g/m ³ s time(s) (hhmm) plane, m/s , actual, m ³ /s (wet STP), m ³ /s (dry STP), m ³ /s	1.2 28.9 (wet) 1.29 (wet) 1040 & 1148 40 313 2.8 0.8 0.61 0.6			
Comments The sampling plane is	ome or all sampling points is //v nt, g/g mole g/m ³ s time(s) (hhmm) plane, m/s , actual, m ³ /s (wet STP), m ³ /s (dry STP), m ³ /s	1.2 28.9 (wet) 1.29 (wet) 1040 & 1148 40 313 2.8 0.8 0.61			
Comments The sampling plane is The gas velocity at sa Stack Parameters Moisture content, % Gas molecular weigl Gas density at STP, k Gas Flow Parameter Flow measurement t Temperature, °C Temperature, K Velocity at sampling Volumetric flow rate Volumetric flow rate	ome or all sampling points is //v nt, g/g mole g/m ³ s :ime(s) (hhmm) plane, m/s , actual, m ³ /s (wet STP), m ³ /s (dry STP), m ³ /s basis), kg/hour	1.2 28.9 (wet) 1.29 (wet) 1040 & 1148 40 313 2.8 0.8 0.61 0.6			

das Allalysel Results	~~	cluge	Withingth		IVIGATITICITI	
Sampli	ngtime 102	e 1025 - 1124		1025 - 1124		1124
Combustion Gases Nitrogen oxides (as NO ₂)	Concentratio mg/m³ <4	n Mass Rate g/min <0.1	Concentration mg/m ³ <4	Mass Rate g/min <0.1	Concentration mg/m³ <4	Mass Rate g/min <0.1
	Concentratio %v/v	n	Concentration %v/v		Concentration %v/v	
Carbon dioxide	<0.4		<0.4		<0.4	
Oxygen	20.9		20.9		20.9	

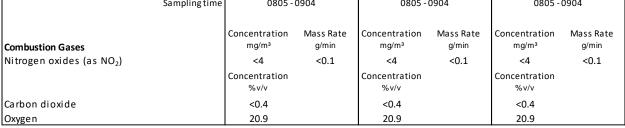
Date	5/03/2021	Client	Borg Manufacturing Pty Ltd
Report	R010598	Stack ID	EPA 12 - Conti 1 Press Vent 2
Licence No.	3035	Location	Oberon
Ektimo Staff	Steven Cooper & Aaron Davis	State	NSW
Process Conditions	Please refer to client records.		2 112 19
Formaldehyde		R	esults
	Sampling time	104	42-1142
		Concentratio mg/m ³	on Mass Rate g/min
Formaldehyde		6.5	0.24
Isokinetic Results		R	esults
	Sampling time	1042-1147	1042-1147 (PM10)
		Concentratio	on Mass Rate
		mg/m³	g/min
Solid Particles		7.2	0.26
Fine particulates (PN	/10)	4.8	0.17
D50 cut size, 10μm			10.7
Isokinotis Somoliza Da	ramatars	la a bita a tita	DM /0
Isokinetic Sampling Pa	rameters	lsokinetic 64	PM 10 64
Sampling time, min		• ·	• •
Isokinetic rate, %	,	98	161
Velocity difference, 9	6	<1	<1

2.9 EPA 12 – Conti 1 Press Vent 3

Report	5/03/2021		Client	Borg Manufac		
	R010598		Stack ID	EPA 12 - Conti	1 Press Vent 3	
Licence No.	3035		Location	Oberon		
Ektimo Staff	Steven Cooper & Aaron	Davis	State	NSW		
Process Conditions	Please refer to client r	ecords.				2 112 1
<u> </u>						
Sampling Plane Deta		coo				
Sampling plane dim		600 ו				
Sampling plane area		0.283				
Sampling port size, r		4" BSF	. ,			
Access & height of po		Stairs				
Duct orientation & s		Horizontal				
Downstream disturb		Exit				
Upstream disturband		Bend				
No. traverses & poin		2	-			
Sample plane compl	iance to AS4323.1	Compliant bu	ıt non-idea	ll i		
Commonto						
Comments						
The sampling plane is a	deemed to be non-ideal due to	o the following reasons:				
	ome or all sampling points	is less than 3 m/s				
The gas velocity at so	ome or all sampling points	is less than 3 m/s				
The gas velocity at so Stack Parameters						
The gas velocity at so Stack Parameters Moisture content, %	 //v	1.7		20.0 (dm)		
The gas velocity at so Stack Parameters Moisture content, % Gas molecular weigh	/v nt, g/g mole	1.7 28.8 (wet)		29.0 (dry)		
The gas velocity at so Stack Parameters Moisture content, % Gas molecular weigh	/v nt, g/g mole	1.7		29.0 (dry) 1.29 (dry)		
The gas velocity at so Stack Parameters Moisture content, % Gas molecular weigh Gas density at STP, k	//v nt, g/g mole g/m³	1.7 28.8 (wet)				
The gas velocity at so Stack Parameters Moisture content, % Gas molecular weigh Gas density at STP, k Gas Flow Parameter	//v nt, g/g mole g/m ³ s	1.7 28.8 (wet)				
The gas velocity at so Stack Parameters Moisture content, % Gas molecular weigh Gas density at STP, k Gas Flow Parameter Flow measurement t	//v nt, g/g mole g/m ³ s	1.7 28.8 (wet) 1.29 (wet)				
The gas velocity at so Stack Parameters Moisture content, % Gas molecular weigh Gas density at STP, k Gas Flow Parameter Flow measurement t Temperature, °C	//v nt, g/g mole g/m ³ s	1.7 28.8 (wet) 1.29 (wet) 0921 & 1030				
The gas velocity at so Stack Parameters Moisture content, % Gas molecular weigh Gas density at STP, k Gas Flow Parameters Flow measurement to Temperature, °C Temperature, K	//v nt, g/g mole g/m ³ s time(s) (hhmm)	1.7 28.8 (wet) 1.29 (wet) 0921 & 1030 39				
The gas velocity at so Stack Parameters Moisture content, % Gas molecular weigh Gas density at STP, k Gas Flow Parameters Flow measurement t Temperature, °C Temperature, K Velocity at sampling	//v nt, g/g mole g/m ³ s time(s) (hhmm) plane, m/s	1.7 28.8 (wet) 1.29 (wet) 0921 & 1030 39 312 2.8				
The gas velocity at so Stack Parameters Moisture content, % Gas molecular weigh Gas density at STP, k Gas Flow Parameters Flow measurement t Temperature, °C Temperature, K Velocity at sampling Volumetric flow rate	//v nt, g/g mole g/m ³ s time(s) (hhmm) plane, m/s , actual, m ³ /s	1.7 28.8 (wet) 1.29 (wet) 0921 & 1030 39 312				
The gas velocity at so Stack Parameters Moisture content, % Gas molecular weigh Gas density at STP, k Gas Flow Parameter Flow measurement t Temperature, °C Temperature, K Velocity at sampling Volumetric flow rate	//v nt, g/g mole g/m ³ s time(s) (hhmm) plane, m/s , actual, m ³ /s (wet STP), m ³ /s	1.7 28.8 (wet) 1.29 (wet) 0921 & 1030 39 312 2.8 0.8 0.61				
The gas velocity at so Stack Parameters Moisture content, % Gas molecular weigh Gas density at STP, k Gas Flow Parameter Flow measurement t Temperature, °C Temperature, K Velocity at sampling Volumetric flow rate Volumetric flow rate	//v nt, g/g mole g/m ³ s time(s) (hhmm) plane, m/s , actual, m ³ /s (wet STP), m ³ /s (dry STP), m ³ /s	1.7 28.8 (wet) 1.29 (wet) 0921 & 1030 39 312 2.8 0.8 0.61 0.6				
The gas velocity at so Stack Parameters Moisture content, % Gas molecular weigh Gas density at STP, k Gas Flow Parameter Flow measurement t Temperature, °C Temperature, K Velocity at sampling Volumetric flow rate Volumetric flow rate	//v nt, g/g mole g/m ³ s time(s) (hhmm) plane, m/s , actual, m ³ /s (wet STP), m ³ /s (dry STP), m ³ /s	1.7 28.8 (wet) 1.29 (wet) 0921 & 1030 39 312 2.8 0.8 0.61				
The gas velocity at so Stack Parameters Moisture content, % Gas molecular weigh Gas density at STP, k Gas Flow Parameter Flow measurement t Temperature, °C Temperature, K Velocity at sampling Volumetric flow rate	//v nt, g/g mole g/m ³ s iime(s) (hhmm) plane, m/s , actual, m ³ /s (wet STP), m ³ /s (dry STP), m ³ /s basis), kg/hour	1.7 28.8 (wet) 1.29 (wet) 0921 & 1030 39 312 2.8 0.8 0.61 0.6			Maximum	

Gas Analyser Results	A	Average		Minimum		num
	Sampling time 092	25 - 1024	0925 -	1024	0925 -	1024
Combustion Gases Nitrogen oxides (as NO ₂)	Concentratio mg/m³ <4	on Mass Rate g/min <0.1	Concentration mg/m ³ <4	Mass Rate g/min <0.1	Concentration mg/m ³ <4	Mass Rate g/min <0.1
	Concentratio %v/v	on	Concentration %v/v		Concentration %v/v	
Carbon dioxide	<0.4		<0.4		<0.4	
Oxygen	20.9		20.9		20.9	

Date	5/03/2021	Client	Borg Manufacturing Pty Ltd
Report	R010598	Stack ID	EPA 12 - Conti 1 Press Vent 3
Licence No.	3035	Location	Oberon
Ektimo Staff	Steven Cooper & Aaron Davis	State	NSW
Process Conditions	Please refer to client records.		21219
Formaldehyde		R	esults
	Sampling time	09	23-1023
		Concentratio mg/m ³	on Mass Rate g/min
Formaldehyde		3.8	0.14
Isokinetic Results		R	esults
	Sampling time		0923-1029 (PM10)
		Concentratio	
		mg/m³	g/min
Solid Particles		19	0.68
Fine particulates (PN	/10)	13	0.45
D50 cut size, 10µm			10.7
lashinatia Comulian De			511.6
Isokinetic Sampling Pa	rameters	Isokinetic	PM 10
Sampling time, min		64	64
Isokinetic rate, %		98	159
Velocity difference, 9	%	-1	-1



2.10 EPA 12 – Conti 1 Press Vent 4

Date	5/03/2021			Client	Borg Manufa	cturing Pty Ltd	
Report	R010598			Stack ID	EPA 12 - Cont	i 1 Press Vent 4	
Licence No.	3035			Location	Oberon		
Ektimo Staff	Steven Cooper & Aaro			State	NSW		
Process Conditions	Please refer to client	t records.					2 112 1
Sampling Plane Det	ails						
Sampling plane din	nensions		600	mm			
Sampling plane are	a		0.28	3 m²			
Sampling port size,	number		4" BS	P (x2)			
Access & height of p	ports		Stairs	20 m			
Duct orientation &	shape		Horizontal	Circular			
Downstream distur	bance		Exit	5 D			
Upstream disturbar	nce		Bend	6 D			
No. traverses & poir	nts sampled		2	8			
Sample plane comp	bliance to AS4323.1		Compliant b	ut non-ideal			
Comments							
The sampling plane is	deemed to be non-ideal due	to the following	g reasons:				
The gas velocity at s	some or all sampling point	ts is less than	3 m/s				
Stack Parameters							
Moisture content, %	•		3.2				
Gas molecular weig			28.7 (wet)		29.0 (dry)		
Gas density at STP,	kg/m³		1.28 (wet)		1.29 (dry)		
Gas Flow Paramete	rs						
Flow measurement	time(s) (hhmm)		0800 & 0911				
Temperature, °C			39				
Temperature, K			312				
Velocity at sampling	g plane, m/s		1.9				
Volumetric flow rate	e, actual, m³/s		0.55				
Volumetric flow rate	e (wet STP), m³/s		0.42				
Volumetric flow rate	e (dry STP), m³/s		0.41				
Mass flow rate (wet	t basis), kg/hour		1900				
Gas Analyser Result	s	Aver	age	Min	iimum	Maxir	mum
cae : maryser nesure	Sampling time	0805 -	-		5 - 0904	0805 -	
		Concentration		Concentration		Constanti	Marca Dat
		Concentration	Mass Rate	Concentration	n Mass Rate	Concentration	Mass Rate

Date	5/03/2021	Client	Borg Manufacturing Pty Ltd
Report	R010598	Stack ID	EPA 12 - Conti 1 Press Vent 4
Licence No.	3035	Location	Oberon
Ektimo Staff	Steven Cooper & Aaron Davis	State	NSW
Process Conditions	Please refer to client records.		2 112 19
Formaldehyde		R	esults
	Sampling time	08	05-0905
		Concentratio mg/m ³	on Mass Rate g/min
Formaldehyde		1.2	0.029
Isokinetic Results		R	esults
isokinetic nesults	Sampling time		0805-0910 (PM10)
		Concentratio	on Mass Rate
		mg/m³	g/min
Solid Particles		28	0.68
Fine particulates (PN	/10)	20	0.5
D50 cut size, 10μm			10.9
Isokinetic Sampling Pa	rameters	Isokinetic	P M 10
Sampling time, min		64	64
Isokinetic rate, %		100	226
Velocity difference, 9	%	<1	<1

2.11 EPA 27 - Combined Conti 2 Press Vent Stack

Date	3/03/2021			Client		cturing Pty Ltd	
Report	R010598			Stack ID		bined Stack (C2	Press Vents)
Licence No.	3035			Location	Oberon		
Ektimo Staff	Steven Cooper & Aar			State	NSW		
Process Conditions	Please refer to clien	t records.					2 112 19
Sampling Plane Details	5						
Sampling plane dimen	nsions		2000) mm			
Sampling plane area			3.14	4 m²			
Sampling port size, nu	mber		4" BS	P (x2)			
Access & height of port	ts	Elevated w	ork platform	25 m			
Duct orientation & sha	аре		Vertical	Circular			
Downstream disturbar	nce		Exit	2.5 D			
Upstream disturbance			Junction	4 D			
No. traverses & points	sampled		2	20			
Sample plane complia	nce to AS4323.1		Compliant b	ut non-ideal			
Comments							
	emed to be non-ideal due	to the following	reasons				
	too near to the upstrea	-		rthan or ogu	al to 2D		
The sampling plane is	too hear to the upstied		but is greate	er than of equ			
Stack Parameters							
Moisture content, %v/v	/		2				
Gas molecular weight,	, g/g mole		28.8 (wet)		29.0 (dry)		
Gas density at STP, kg/	′m³		1.28 (wet)		1.29 (dry)		
Gas Flow Parameters							
Flow measurement tin	ne(s)(hhmm)		0858 & 1055				
Temperature, °C			30				
Temperature, K			303				
Velocity at sampling p	lane m/s		10				
Volumetric flow rate, a			33				
Volumetric flow rate (v			26				
Volumetric flow rate (25				
Mass flow rate (wet ba			120000				
			120000				
Gas Analyser Results		Aver	age	Min	imum	Maxir	num
,	Samplingtime	0917 -	1020	0917	- 1020	0917 -	1020
		Concentration	Mass Rate	Concentration	Mass Rate	Concentration	Mass Rate
Combustion Gases		mg/m ³	g/min	mg/m ³	g/min	mg/m ³	g/min
Nitrogen oxides (as NC	1-1	<4	<6	<4	<6	<4	<6
initiogen usides (ds NC	21		NO				NO
		Concentration		Concentration		Concentration	

%v/v

<0.4

20.7

%v/v

<0.4

20.5

%v/v

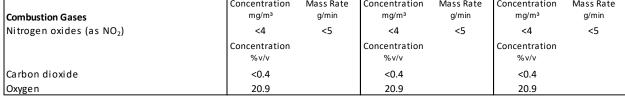
<0.4

20.8

Carbon dioxide

Oxygen

Date	3/03/2021	Client	Borg Manufacturing Pty Ltd
Report	R010598	Stack ID	EPA 27 - Combined Stack (C2 Press Vents)
Licence No.	3035	Location	Oberon
Ektimo Staff	Steven Cooper & Aaron Davis	State	NSW
Process Conditions	Please refer to client records.		2 112 19
Formoldohudo			esults
Formaldehyde	Sampling time		14-1014
	Sampling time	09	14-1014
		Concentratio	
		mg/m³	g/min
Formaldehyde		1.9	2.8
Isokinetic Results		R	esults
	Sampling time		0908-1052 (PM10)
		Concentratio	on Mass Rate
		mg/m³	g/min
Solid Particles		7.6	11
Fine particulates (PN	/10)	5.2	7.9
D50 cut size, 10µm			10.5
Isokinetic Sampling Par	rameters	Isokinetic	PM 10
Sampling time, min		100	100
Isokinetic rate, %		99	84
Velocity difference, %	6	8	8



2.12 EPA 29 – Forming Line Baghouse

Date Report	2/03/2021 R010598			Client Stack ID		cturing Pty Ltd ing Line Baghou	use
Licence No.	3035			Location	Oberon		
Ektimo Staff	Steven Cooper & Aar	on Davis		State	NSW		
Process Conditions	Please refer to clien	t records.					2 112 19
Sampling Plane Details							
Sampling plane dimen	sions		1000) mm			
Sampling plane area			0.78	5 m²			
Sampling port size, nur	nber		4" BS	P (x2)			
Access & height of port	S	Elevated w	vork platform	10 m			
Duct orientation & sha	pe		Inclined	Circular			
Downstream disturban	ce		Bend	3 D			
Upstream disturbance			Bend	3.5 D			
No. traverses & points s	sampled		2	16			
Sample plane complia	nce to AS4323.1		Compliant b	ut non-ideal			
Comments							
		to the following					
The sampling plane is dee The sampling plane is		-			al ta 20		
The sampling plane is			but is greate	i tilali ol equ			
Stack Parameters							
Moisture content, %v/v			0.68				
Gas molecular weight,	g/g mole		28.9 (wet)		29.0 (dry)		
Gas density at STP, kg/r	m³		1.29 (wet)		1.29 (dry)		
Gas Flow Parameters							
Flow measurement tim	e(s) (hhmm)		1508 & 1640				
Temperature, °C			41				
Temperature, K			314				
Velocity at sampling pl	ane, m/s		38				
Volumetric flow rate, a			30				
Volumetric flow rate (w			22				
Volumetric flow rate (d			22				
Mass flow rate (wet ba			100000				
	.,						
Gas Analyser Results		Aver	age	Min	imum	Maxin	num
-	Samplingtime	1515 -	1614	1515	5-1614	1515 - 1	1614
		Concontration	Macc Pata	Concontration	Macs Pate	Concontration	Macc Bata
Combustion Gases		Concentration mg/m ³	Mass Rate g/min	Concentration mg/m ³	n Mass Rate g/min	Concentration mg/m ³	Mass Rate g/min
Nitrogen oxides (as NO	`	g	g,		~5	<1	چے ح

Date	2/03/2021	Client	Borg Manufacturing Pty Ltd
Report	R010598	Stack ID	EPA 29 - Forming Line Baghouse
Licence No.	3035	Location	Oberon
Ektimo Staff	Steven Cooper & Aaron Davis	State	NSW
Process Conditions	Please refer to client records.		2 12 19
Foramldehyde		R	esults
rorannuenyue	Sampling time		35-1635
		Concentratio mg/m ³	on Mass Rate g/min
Formaldehyde		1.7	2.2
Isokinetic Results		B	esults
	Sampling time		1512-1635 (PM10)
		Concentratio mg/m ³	on Mass Rate g/min
Solid Particles		<2	<3
Fine particulates (PN	/10)	<2	<3
D50 cut size, 10µm	,		9.7
Isokinetic Sampling Pa	ramators	lsokinetic	PM 10
Sampling time, min	lameters	55	79
Isokinetic rate, %		142	84
Velocity difference, %	6	<1	<1
Smoke Obscuration		F	Result
	Time of assessment	153	30-1545
Smoke Obscuration			0

2.13 EPA 30 – Form Station Baghouse

Date	2/03/2021		Client	Borg Manufacturi	ng Pty Ltd	
Report	R010598		Stack ID	EPA 30 - Form Stat	tion Baghous <u>e</u>	
Licence No.	3035		Location	Oberon		
Ektimo Staff Steven Cooper & Aaron Davis		is	State	NSW		
Process Conditions	Please refer to client record	ds.				2 112 19
Sampling Plane Details						
Sampling plane dimer	isions	545	mm			
Sampling plane area		0.23	3 m²			
Sampling port size, nu	mber	4" BS	P (x2)			
Access & height of por	ts El e	evated work platform	10 m			
Duct orientation & sha	ape	Inclined	Circular			
Downstream disturbar	nce	Bend	8 D			
Upstream disturbance		Bend	8 D			
No. traverses & points	sampled	2	8			
Sample plane complia	nce to AS4323.1	Ideal				
Stack Parameters						
Moisture content, %v/v	/	<0.4				
Gas molecular weight,		29.0 (wet)		29.0 (dry)		
Gas density at STP, kg/		1.29 (wet)		1.29 (dry)		
Gas Flow Parameters						
Flow measurement tin	ne(s) (hhmm)	1700 & 1815				
Temperature, °C		39				
Temperature, K		312				
Velocity at sampling p	lane, m/s	28				
Volumetric flow rate, a		6.4				
Volumetric flow rate (v	vet STP), m³/s	4.8				
Volumetric flow rate (c	dry STP), m³/s	4.8				
Mass flow rate (wet ba		22000				
Gas Analyser Results		Average		inimum	Maximum	

Gas Analyser Results		Aver	age	Minir	num	Maximum	
	Samplingtime	1705 -	1804	1705 -	1804	1705 -	1804
Combustion Gases Nitrogen oxides (as NO ₂)		Concentration mg/m³ <4	Mass Rate g/min <1	Concentration mg/m ³ <4	Mass Rate g/min <1	Concentration mg/m ³ <4	Mass Rate g/min <1
		Concentration %v/v		Concentration %v/v		Concentration %v/v	
Carbon dioxide		<0.4		<0.4		<0.4	
Oxygen		20.9		20.9		20.9	

Date	2/03/2021	Client	Borg Manufacturing Pty Ltd
Report	R010598	Stack ID	EPA 30 - Form Station Baghouse
Licence No.	3035	Location	Oberon
Ektimo Staff	Steven Cooper & Aaron Davis	State	NSW
Process Conditions	Please refer to client records.		2 112 19
Formaldehyde		R	esults
ronnaldenyde	Sampling time		02-1802
		Concentratic mg/m ³	on Mass Rate g/min
Formaldehyde		1.5	0.42
Isokinetic Results		R	esults
	Sampling time	1702-1810	1702-1810 (PM10)
		Concentratio mg/m³	on Mass Rate g/min
Solid Particles		<2	<0.5
Fine particulates (PM	110)	<4	<1
D50 cut size, 10µm	,		10.0
leakingtia Complian Do		lsokinetic	PM 10
Isokinetic Sampling Par	rameters	isokinetic 64	64
Sampling time, min Isokinetic rate, %		99	91
Velocity difference, %	6	2	2
	-		_
Smoke Obscuration		F	Result
	Time of assessment	173	30 - 1745
Smoke Obscuration			0

2.14 EPA 31 – Particle Board Press Extraction System

Date	2/03/2021			Client	Borg Manufa	cturing Pty Ltd	
Report R010598				Stack ID	EPA 31 - Parti	cle Board Press	Extraction
					System		
Licence No.			Location		Oberon		
Ektimo Staff	Steven Cooper & Aaron Davis			State	NSW		
Process Conditions	Please refer to client	t records.					2 112 19
Sampling Plane Details							
Sampling plane dimens	sions		2000) mm			
Sampling plane area			3.14	4 m²			
Sampling port size, nun	nber		4" BS	P (x2)			
Access & height of ports	S	Elevated w	ork platform	30 m			
Duct orientation & sha			Vertical	Circular			
Downstream disturban	ce		Exit	2 D			
Upstream disturbance			Junction	3 D			
No. traverses & points s	sampled		2	20			
Sample plane compliar	nce to AS4323.1		Compliant b	ut non-ideal			
• ·							
Comments	med to be non-ideal due	to the following	reasons.				
The sampling plane is dee		•		or than or equ	al to 2D		
		•		er than or equ	al to 2D		
The sampling plane is dee		•		er than or equ	al to 2D		
The sampling plane is dee The sampling plane is		•		er than or equ	al to 2D		
The sampling plane is dee The sampling plane is Stack Parameters	too near to the upstrea	•	but is greate	er than or equ	29.0 (dry)		
The sampling plane is dee The sampling plane is Stack Parameters Moisture content, %v/v	too near to the upstrea g/g mole	•	but is greate	er than or equ			
The sampling plane is dee The sampling plane is Stack Parameters Moisture content, %v/v Gas molecular weight,	too near to the upstrea g/g mole	•	but is greate 3.4 28.6 (wet)	er than or equ	29.0 (dry)		
The sampling plane is dee The sampling plane is Stack Parameters Moisture content, %v/v Gas molecular weight, Gas density at STP, kg/r	too near to the upstrea g/g mole n ³	m disturbance	but is greate 3.4 28.6 (wet)	er than or equ	29.0 (dry)		
The sampling plane is dee The sampling plane is Stack Parameters Moisture content, %v/v Gas molecular weight, Gas density at STP, kg/r Gas Flow Parameters Flow measurement tim	too near to the upstrea g/g mole n ³	m disturbance	3.4 28.6 (wet) 1.28 (wet)	er than or equ	29.0 (dry)		
The sampling plane is dee The sampling plane is Stack Parameters Moisture content, %v/v Gas molecular weight, Gas density at STP, kg/r Gas Flow Parameters Flow measurement tim Temperature, °C	too near to the upstrea g/g mole n ³	m disturbance	3.4 28.6 (wet) 1.28 (wet) 1245 & 1455	er than or equ	29.0 (dry)		
The sampling plane is dee The sampling plane is dee Stack Parameters Moisture content, %v/v Gas molecular weight, Gas density at STP, kg/r Gas Flow Parameters Flow measurement tim Temperature, °C Temperature, K	too near to the upstrea g/g mole n ³ e(s) (hhmm)	m disturbance	3.4 28.6 (wet) 1.28 (wet) 1245 & 1455 35	er than or equ	29.0 (dry)		
The sampling plane is dee The sampling plane is dee Stack Parameters Moisture content, %v/v Gas molecular weight, Gas density at STP, kg/r Gas Flow Parameters Flow measurement tim Temperature, °C Temperature, K Velocity at sampling pl	too near to the upstrea g/g mole n ³ e(s) (hhmm) ane, m/s	m disturbance	3.4 28.6 (wet) 1.28 (wet) 1245 & 1455 35 308	er than or equ	29.0 (dry)		
The sampling plane is dee The sampling plane is Stack Parameters Moisture content, %v/v Gas molecular weight, Gas density at STP, kg/r Gas Flow Parameters	too near to the upstrea g/g mole n ³ e(s) (hhmm) ane, m/s ctual, m ³ /s	m disturbance	3.4 28.6 (wet) 1.28 (wet) 1245 & 1455 35 308 10	er than or equ	29.0 (dry)		
The sampling plane is dee The sampling plane is dee The sampling plane is Stack Parameters Moisture content, %v/v Gas molecular weight, Gas density at STP, kg/r Gas Flow Parameters Flow measurement tim Temperature, °C Temperature, K Velocity at sampling pl Volumetric flow rate, and	too near to the upstrea g/g mole n ³ e(s) (hhmm) ane, m/s ctual, m ³ /s ret STP), m ³ /s	m disturbance	3.4 28.6 (wet) 1.28 (wet) 1245 & 1455 35 308 10 32	er than or equ	29.0 (dry)		
The sampling plane is dee The sampling plane is dee The sampling plane is dee Stack Parameters Moisture content, %v/v Gas molecular weight, Gas density at STP, kg/r Gas Flow Parameters Flow measurement tim Temperature, °C Temperature, K Velocity at sampling pl Volumetric flow rate, at Volumetric flow rate (w	too near to the upstrea g/g mole n ³ e(s) (hhmm) ane, m/s ctual, m ³ /s ret STP), m ³ /s ry STP), m ³ /s	m disturbance	3.4 28.6 (wet) 1.28 (wet) 1245 & 1455 35 308 10 32 25	er than or equ	29.0 (dry)		
The sampling plane is dee The sampling plane is dee The sampling plane is dee Moisture content, %v/v Gas molecular weight, Gas density at STP, kg/r Gas Flow Parameters Flow measurement tim Temperature, °C Temperature, K Velocity at sampling pl Volumetric flow rate, at Volumetric flow rate (we Volumetric flow rate (def Mass flow rate (wet base)	too near to the upstrea g/g mole n ³ e(s) (hhmm) ane, m/s ctual, m ³ /s ret STP), m ³ /s ry STP), m ³ /s	m disturbance	3.4 28.6 (wet) 1.28 (wet) 1245 & 1455 35 308 10 32 25 24 120000		29.0 (dry) 1.29 (dry)	Maxir	
The sampling plane is dee The sampling plane is dee The sampling plane is dee Moisture content, %v/v Gas molecular weight, Gas density at STP, kg/r Gas Flow Parameters Flow measurement tim Temperature, °C Temperature, K Velocity at sampling pl Volumetric flow rate, at Volumetric flow rate (d	too near to the upstrea g/g mole n ³ e(s) (hhmm) ane, m/s ctual, m ³ /s ret STP), m ³ /s ry STP), m ³ /s sis), kg/hour	<u>m disturbance</u>	3.4 28.6 (wet) 1.28 (wet) 1245 & 1455 35 308 10 32 25 24 120000	Min	29.0 (dry) 1.29 (dry) imum	Maxir 1305 -	
The sampling plane is dee The sampling plane is dee The sampling plane is Stack Parameters Moisture content, %v/v Gas molecular weight, Gas density at STP, kg/r Gas Flow Parameters Flow measurement tim Temperature, °C Temperature, K Velocity at sampling pl Volumetric flow rate, at Volumetric flow rate (we Volumetric flow rate (def Mass flow rate (wet base)	too near to the upstrea g/g mole n ³ e(s) (hhmm) ane, m/s ctual, m ³ /s ret STP), m ³ /s ry STP), m ³ /s	m disturbance	3.4 28.6 (wet) 1.28 (wet) 1245 & 1455 35 308 10 32 25 24 120000	Min	29.0 (dry) 1.29 (dry)	Maxir 1305 -	
The sampling plane is dee The sampling plane is dee The sampling plane is dee Stack Parameters Moisture content, %v/v Gas molecular weight, Gas density at STP, kg/r Gas Flow Parameters Flow measurement tim Temperature, °C Temperature, K Velocity at sampling pl Volumetric flow rate, at Volumetric flow rate (w Volumetric flow rate (d Mass flow rate (wet ba	too near to the upstrea g/g mole n ³ e(s) (hhmm) ane, m/s ctual, m ³ /s ret STP), m ³ /s ry STP), m ³ /s sis), kg/hour	<u>m disturbance</u>	3.4 28.6 (wet) 1.28 (wet) 1245 & 1455 35 308 10 32 25 24 120000	Min	29.0 (dry) 1.29 (dry) imum ;-1431	-	
The sampling plane is dee The sampling plane is dee The sampling plane is dee Stack Parameters Moisture content, %v/v Gas molecular weight, Gas density at STP, kg/r Gas Flow Parameters Flow measurement tim Temperature, °C Temperature, K Velocity at sampling pl Volumetric flow rate, at Volumetric flow rate (w Volumetric flow rate (d Mass flow rate (wet ba	too near to the upstrea g/g mole n ³ e(s) (hhmm) ane, m/s ctual, m ³ /s ret STP), m ³ /s ry STP), m ³ /s sis), kg/hour	<u>m disturbance</u> Avera 1305 - 1	3.4 28.6 (wet) 1.28 (wet) 1245 & 1455 35 308 10 32 25 24 120000	Min 1305	29.0 (dry) 1.29 (dry) imum ;-1431	1305 -	1431

Concentration

%v/v

<0.4

20.9

Concentration

%v/v

<0.4

20.9

Concentration

%v/v

<0.4

20.9

Carbon dioxide

Oxygen

Date	2/03/2021	Client	Borg Manufacturing Pty Ltd
Report	R010598	Stack ID	EPA 31 - Particle Board Press Extraction
			System
Licence No.	3035	Location	Oberon
Ektimo Staff	Steven Cooper & Aaron Davis	State	NSW
Process Conditions	Please refer to client records.		2 112 19
Formaldehyde		R	esults
	Sampling time	13	15-1415
		Concentratio mg/m³	on Mass Rate g/min
		•	•
Formaldehyde		4.6	6.8
Isokinetic Results		R	esults
	Sampling time	1305-1450	1305-1450 (PM10)
		Concentratio mg/m³	on Mass Rate g/min
Solid Particles		46	66
Fine particulates (PN	110)	40	58
D50 cut size, 10μm			10.2
Isokinetic Sampling Par	rameters	Isokinetic	PM 10
Sampling time, min		100	100
Isokinetic rate, %		92	86
Velocity difference, %	6	5	5
Smoke Obscuration		F	Result
	Time of assessment	133	34 - 1354
Smoke Obscuration			0

18

2.15 EPA 32 – WESP

Date	2/03/2021			Client	Borg Manufa	cturing Pty Ltd	
Report	R010598			Stack ID	EPA 32 - WESF		
Licence No.	3035			Location	Oberon		
Ektimo Staff	Steven Cooper & Aar	on Davis		State	NSW		
Process Conditions	Please refer to clien	t records.					2 112 19
Sampling Plane Deta	iils						
Sampling plane dim) mm			
Sampling plane area	3		4.9	9 m²			
Sampling port size, r				SP (x2)			
Access & height of p			Crane				
Duct orientation & s				Circular			
Downstream disturb				2 D			
Upstream disturban		Change	in diameter				
No. traverses & poin	ts sampled		2	28			
Sample plane compl	iance to AS4323.1		Compliant b	ut non-ideal			
Comments							
	deemed to be non-ideal due						
	e of the sampling plane is		-				
The sampling plane	is too near to the upstrea	am disturbance	but is greate	er than or equ	al to 2D		
<u></u>							
Stack Parameters			24				
Moisture content, %		24					
Gas molecular weig			26.6 (wet)		29.3 (dry)		
Gas density at STP, k	g/m²		1.19 (wet)		1.31 (dry)		
Gas Flow Parameter	<i>د</i>						
Flow measurement			0835 & 1115				
Temperature, °C			62				
Temperature, K			335				
Velocity at sampling	nlane m/s		15				
Volumetric flow rate			73				
Volumetric flow rate			73 52				
Volumetric flow rate			40				
Mass flow rate (wet			220000				
mass now rate (wet	54515 /, Kg/11001		220000				
Gas Analyser Results	i	Aver	age	Min	imum	Maxir	num
	, Sampling time		-		- 1030	0852 -	
	· · · · · · · · · · · · · · · · · · ·		-				-
		Concentration	Mass Rate	Concentration	Mass Rate	Concentration	Mass Rate
Combustion Gases		mg/m ³	g/min	mg/m ³	g/min	mg/m ³	g/min
Nitrogen oxides (as	NO ₂)	210	510	140	320	320	760
in a spen on a condition (a s		Concentration	510	Concentration		Concentration	,
		%v/v		%v/v		%v/v	
Carbon dioxide		3.2		2.5		4	
		3.2		2.5		4	

17.3

17

Oxygen

Date	2/03/2021	Client	Borg Manufacturing Pty Ltd	
Report	R010598	Stack ID	EPA 32 - WESP	
Licence No.	3035	Location	Oberon	
Ektimo Staff	Steven Cooper & Aaron Davis	State	NSW	
Process Conditions	Please refer to client records.			2 112 19
Formaldehyde		Reg	sults	
Tormalacityac	Samplingtime)-1001	
		Concentration mg/m ³	Mass Rate g/min	
Formaldehyde		0.21	0.5	
Isokinetic Results		Reg	sults	
	Samplingtime)-1112	
		Concentration mg/m ³	Mass Rate g/min	
Solid Particles		30	73	
Isokinetic Sampling Parar	neters			
Sampling time, min		140		
Isokinetic rate, %		99		
Velocity difference, %		-9		
Smoke Obscuration		Re	sult	
	Time of assessment		- 1004	
Smoke Obscuration			0	

* Fine particulate testing could not be undertaken at this location due to excessively saturated gas stream

2.16 EPA 33 – Cogeneration Plant 1 Stack

				Client	Borg Manufactur	ing Pty Ltd			
/2021)598				Stack ID	Cogeneration Pla				
				Location	Oberon				
en Cooper & Aaron				State					
he running between	700-750kW								211219
		Ch - i							
		Stairs							
			1	2					
23.1			Id	eal					
g (NSW EPA Our ref	erence: SF20/16	5003; DOC20/1639	969-8 "Non-cor	mpliant sampling	gplane")				
						20 7 ()			
			3 %			1.41			
)			1440 & 1548						
			405						
			678						
1									
		Average			Minimum			Maximum	
Sampling time		1443 - 1544			1443 - 1544			1443 - 1544	
		Corrected to 5%			Corrected to 5%			Corrected to 5%	
	Concentration	02	Mass Rate	Concentration	02	Mass Rate	Concentration	02	Mass Rate
									g/min
	230	320	8.9	220	300	8.4	300	430	12
		Concentration			Concentration			Concentration	
		% v/v			% v/v			% v/v	
		7.3			7.2			7.3	
		9.6			9.5			9.7	
					Results				
Sampling time									
				0.57	0.8	0.022			
Sampling time									
				Concertation		Mass Data			
				Concentration mg/m ³	Mg/m ³	Mass Rate g/min			
				<0.1	<0.2	<0.005			
						0.027			
				0,68	0,96				
				0.68 0.093	0.96 0.13				
						0.0036 0.0048			
	en Cooper & Aaron ne running between 23.1 Ig (NSW EPA Our ref)) //s //s	en Cooper & Aaron Davis he running between 700-750kW 23.1 23.1 23.1 (NSW EPA Our reference: SF20/16 () //s //s //s //s //s //s //s //s //s /	en Cooper & Aaron Davis he running between 700-750kW 23.1 23.1 g (NSW EPA Our reference: SF20/16003; DOC20/163) (NSW EPA	en Cooper & Aaron Davis he running between 700-750kW 270 0.05 4" BS Stairs & fixed ladder Vertical Exit Junction 1 23.1 123.1 13 23.1 140 8.8 28.6 (wet) 1.28 (wet) 5 % 1440 & 1548 405 678 35 2 (8 Sampling time State Sampling time 270 mm 0.0573 m ³ 4" BSP (x1) Stairs & fixed ladder 8 m Vertical Circular Exit > 6 D Junction 6 D 1 2 3.1 (ISW EPA Our reference: SF20/16003; DOC20/163969-8 "Non-compliant sampling dots and the state 35 2 (ISW EPA Our reference: SF20/16003; DOC20/163969-8 "Non-compliant sampling dots and the state 35 35 2 (ISW EPA Our reference: SF20/16003; DOC20/163969-8 "Non-compliant sampling dots and the state 35 35 2 (ISW EPA Our reference: SF20/16003; DOC20/163969-8 "Non-compliant sampling dots and the state 35 2 (ISW EPA Our reference: SF20/16003; DOC20/163969-8 "Non-compliant sampling dots and the state 35 2 (ISW EPA Our reference: SF20/16003; DOC20/163969-8 "Non-compliant sampling dots and the state 35 35 2 (ISW EPA Our reference: SF20/16003; DOC20/163969-8 "Non-compliant sampling dots and the state 35 35 35 35 35 35 35 300 4 (ISW EPA Our reference: SF20/16003; DOC20/163969-8 "Non-compliant sampling dots and the state 35 35 35 35 35 300 4 (ISW EPA Our reference: SF20/16003; DOC20/163969-8 "Non-compliant sampling dots and the state 35 35 35 35 35 35 35 35 35 35 35 35 35	En Cooper & Aaron Davis he rumning between 700-750kW State NSW 270 mm 0.0573 m² 4" BSP (x1) Stairs & fixed ladder 8 m Wertical Circular Exit >6 0 Junction 6 D 1 2 State S (x1) Stairs & fixed ladder 8 m Wertical Circular Exit >6 0 Junction 6 D 1 2 23.1 12 Ideal g (NSW EPA Our reference: SF20/16003; DOC20/163969-8 "Non-compliant sampling plane") 8.8 2.8.6 (wet) 1.28 (wet) 5 % 8.8 2.8.6 (wet) 1.28 (wet) 5 % 0 1440 & 1548 405 678 35 2 (5 % 0.051 3300 4 Minimum 1443 - 1544 5 0.051 3300 4 0.051 3300 4 0.051 300 0.051 300 5 0.051 35 35 35 35 35 35 35 0.051 300 0.051 300 0.051 300 0.051 300 5 0.051 320 0.051 300 0.051 300 0.051 300 0.051 300 0.051 300 5 0.57 0.8 0.57 0.8 0.57 0.8 5 Sampling time Executed to 5% 50 0.57 0.8 0.57 0.8 5 Sampling time Executed to 5% 50 0.57 0.8 0.57 0.8	State NSW 270 mm 0.0573 m² 4*85P (x1) Stairs & fixed lader & m Vertical Circular Exit × 5 D Junction 6 D 1 2 270 mm 0.0573 m² 4*85P (x1) Stairs & fixed lader & m Vertical Circular 23.1 teal 29.7 (dr) 1.2 keet) 1.2 g (NSW EPA Our reference: SF20/16003; DOC20/163969-8 "Non-compliant sampling plane") 29.7 (dr) 1.2 keet) 1.32 (dr) 1.32 (dr) y 1.41 1.32 (dr) 1.32 (dr) y 5 % 1.41 y 1.440 & 1548 405 578 35 35 35 35 35 32 4 y 1.431 - 1544 Concentration mg/m² 0.2 y 6.8 20.7 (dr) 1.41 y 1.41 - 1544 Concentration %/y 7.2 y 0.2 Mass Rate mg/m² 0.2 Mass Rate mg/m² 0.2 Sampling time Concentration %/y 7.2 9.5 9.5 9.5 Sampling time Sampling time 1.84.154 0.57 0.88 State mg/m² 0.22 0.22 Sampling time Sampling time 1.44.154 0.57 0.8 0.22	State NSW 220 mm 0.0573 m² 4" 55 k (1) Stairs & Reef ladder 8 m Vertical Circular Exit >6 D Junction 6 D 1 2 23.1 220 mm 0.0573 m² 4" 55 k (1) Stairs & Reef ladder 8 m Vertical Circular Exit >6 D Junction 6 D 1 2 1 2 1 2 3.1 29.7 (dry) 23.1 1 2 1 2 1 2 1 2 3 (MSW EPA Our reference: SF20/16003; DOC20/163969-8 "Non-compliant sampling plane") 29.7 (dry) 38.8 28.6 (wet) 29.7 (dry) 1.32 (dry) 5 % 1.41 1.32 (dry) 5 % 1.41 1.32 (dry) 6 (wet) 29.7 (dry) 1.32 (dry) 5 % 1.41 1.41 0) 1440 & 1548 405 578 3300 405 678 3300 1.44 1.28 (wet) 1.32 (dry) 1.32 (dry) 1.32 (dry) 5 % 0.71 0.02 0.65 20.7 (dry) 1.32 (dry) 5 mpling time Average (concentration mg/m² Mass Rate mg/m² Concentration mg/m² 300 220 300 8.4 20.7 (dry) 300 300 5 simpling time Id43 - 154 5 w Concentration mg/m² 7.2 9.6 30.02 5 simpling time Id44 - 154 0.57 0.62	State NSW 270 mm 0.0553 m ⁻⁷ 4" 95P (x1) Stairs & fixed ladder 8 m Exit > 6 D Junction 6 D 1 2 3.1 270 mm 4" 95P (x1) Stairs & fixed ladder 8 m Exit > 6 D Junction 6 D 1 2 10 deal 270 mm 4" 95P (x1) Stairs & fixed ladder 8 m Exit > 6 D Junction 6 D 1 2 1 2 1 deal g (NSW EPA Our reference: \$F20/16003; DOC20/163969-8 "Non-compliant sampling plane"] 29.7 (dry) 1 3.2 (dry) 1 3.2 (dry) 1 3.2 (dry) 1 3.2 (dry) 1 3.2 (dry) 1 3.2 (dry) 1 3.3 (dry) 1 3.3 (dry) 1 3.3 (dry) 1 3.3 (dry) 1 4.4 1 1.4 1 Maximum 1 4.4 1.5 4 Concentration 5 % Concentration 5 %

(1) Unless otherwise reported, the following target compounds were found to be below detection: Dichloromethane, Ethanol, 1,1-Dichloroethene, rtans-1,2-Dichloroethene, cis-1,2-Dichloroethene, Chloroform, 1,1,1-Trichloroethane, 1,2-Dichloroethane, Benzene, Carbon tetrachloride, Butanol, 1-Methoxy-2-propanol, Trichloroethylene, Toluene, 1,1,2-Trichloroethane, Tetrachloroethene, Chlorobenzene, Ethylbenzene, m + p.Xylene, Styrene, Styrene, Studiene, 2-Alettivitethylbenzene, 1,2,2-Tetrachloroethane, Isopropylbenzene, Propylbenzene, 1,3,5-Trimethylbenzene, tert-Butylbenzene, 1,2,4-Trimethylbenzene, 1,2,3-Trimethylbenzene, Acetone, Penane, Acronon, Finane, Actylone, Tenane, Activation, Fenane, Activati

2.17 EPA 34 – Cogeneration Plant 2 Stack

					011	D 14				
D 1	03/2021				Client		facturing Pt			
)10598				Stack ID		ion Plant 2 S	таск		
					Location	Oberon				
	even Cooper & Aar				State	NSW				
Process Conditions En	igine running betw	een 700-750kW	V							2 112 19
Sampling Plane Details										
Sampling plane dimension	¢			270 m	m mm					
Sampling plane area	,				73 m ²					
Sampling port size, number					P (x1)					
Access & height of ports			Stairs 8	4 63 fixed ladder						
			Stalls 6		Circular					
Duct orientation & shape										
Downstream disturbance					>6 D					
Upstream disturbance				Junction						
No. traverses & points same					2					
Sample plane compliance t	o AS4323.1			Ide	eal					
Comments										
Note approval of single por	t testing (NSW FPA	Our reference	: SF20/16003· F	00020/163969-	8 "Non-compli	antsampli	ng plane")			
	L LOS LING (NOW LFA	sar reference.	. 51 207 20003, L		- non-compli	ancampii				
Stack Parameters										
Moisture content, %v/v				9.7						
Gas molecular weight, g/g r	nole			28.5 (wet)			29.7 (dry)			
Gas density at STP, kg/m ³				1.27 (wet)			1.32 (dry)			
% Oxygen correction & Facto	r			1.27 (wet) 5 %			1.32 (ury) 1.42			
70 GAYgen conection & Facto	i			J 70			1.42			
Gas Flow Parameters										
	(h h			1205 8 1425						
Flow measurement time(s)	(nnmm)			1305 & 1435						
Temperature, °C				400						
Temperature, K				673						
Velocity at sampling plane,				35						
Volumetric flow rate, actual				2						
Volumetric flow rate (wet S	ΓP), m³/s			0.72						
Volumetric flow rate (dry ST	P), m³/s			0.65						
Mass flow rate (wet basis),	kg/hour			3300						
Velocity difference, %				-2						
Gas Analyser Results			Average			Minimum			Maximum	
	Samplingtime		1331 - 1432			1331 - 1432			1331 - 1432	
			Corrected to			Corrected			Corrected nto	
		Concentration		Mass Data	Concentration	to 5% O2	Mass Rate	Concentration	5% 02	Mass Rate
Combustion Course		Concentration mg/m ³	5% 02 mg/m ³	Mass Rate g/min	Concentration mg/m ³	mg/m ³	g/min	Concentration mg/m ³	5% 02 mg/m ³	g/min
Combustion Gases										
Nitrogen oxides (as NO ₂)		270	390	11	260	370	10	280	400	11
			Concentration		· ·	oncentration			Concentration	
			Concentration %v/v			%v/v			%v/v	
Carbon dioxide			7.2			7.2			7.2	
Oxygen			7.2 9.7			7.2 9.7			7.2 9.8	
0.7501		I	5.1		1	5.7		1	5.0	
Total VOCs (as n-Propane)						Results				
	Samplingtime					1332-1432				
						Corrected				
					Concentration		Mass Rate			
					mg/m ³	mg/m ³	g/min			
Total					0.11	0.16	0.0045			
VOC (speciated)						Results				
	Samplingtime					1332-1432				
						Corrector				
					Concentration	Corrected to 5% O2	Mass Rate			
					mg/m ³	t0 5% 02 mg/m ³	g/min			
D 1 11 11 11 (1)										
					<0.1	<0.2	<0.005			
Detection limit ⁽¹⁾										
Detection limit ⁽¹⁾ α-Pinene β-Pinene					0.16 0.19	0.23 0.27	0.0064 0.0074			

(1) Unless otherwise reported, the following target compounds were found to be below detection: Dichloromethane, Ethanol, Isopropanol, 1; Dichloroethene, trans-12-Dichloroethene, cis-12-Dichloroethene, Chloroform, 1; 1; Trichloroethane, 12-Dichloroethane, Benzene, Carbon tetrachloride, Butanol, 1; Methoxy-2-propanol, Trichloroethylene, Toluene, 112-Trichloroethane, Tetrachloroethene, Chlorobenzene, Ethylbenzene, m + p-Xylene, Styrene, o-Xylene, 2-Butoxyethanol, 112,2-Tetrachloroethane, Isopropyloenzene, Propylbenzene, 13,5-Trimethylbenzene, tert-Butybenzene, 12,4-Trimethylbenzene, 12,3-Trimethylbenzene, Acetone, Pentane, Acrylonitrile, Methyl ethyl ketone, n-Hexane, Ethyl acetate, Cyclohexane, 2-Methylhexane, Isopropylacetate, 2,3-Dimethylbenzene, JMethylbenzene, Heyl acetate, Propyl acetate, Butyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, 2-Hexanone, Octane, Butyl acetate, 1:Methoxy-2-propyl acetate, Butyl acrylate, Nonane, Cellosolve acetate, Decane, 3-Carene, D-Limonene, Undecane, Dodecane, Tridecane, Tetradecane

3 PLANT OPERATING CONDITIONS

Borg Manufacturing have collated plant operating condition and will provide them to NSW EPA as required.

See Borg Manufacturing's records for complete process conditions.

4 TEST METHODS

All sampling and analysis performed by Ektimo unless otherwise specified. Specific details of the methods are available upon request.

Parameter	Sampling Method	Analysis Method	Uncertainty*	NATA Accredited		
				Sampling	Analysis	
Sample plane criteria	NSW TM-1	NA	NA	✓	NA	
Flow rate, temperature and velocity	NSW TM-2	NSW TM-2	8%, 2%, 7%	NA	~	
Moisture content	NSW TM-22	NSW TM-22	8%	~	~	
Molecular weight	NA	NSW TM-23	not specified	NA	✓	
Dry gas density	NA	NSW TM-23	not specified	NA	~	
Carbon dioxide	NSW TM-24	NSW TM-24	13%	~	~	
Nitrogen oxides	NSW TM-11	NSW TM-11	12%	~	✓	
Dxygen	NSW TM-25	NSW TM-25	13%	✓	✓	
Aldehydes and ketones	NSW TM-34	Ektimo 332	16%	✓	\checkmark^{\dagger}	
Sulfur dioxide	NSW TM-3	Ektimo 235	16%	✓	\checkmark^{\dagger}	
Speciated volatile organic compounds (VOC's)	NSW TM-34 ^d	Ektimo 344	19%	✓	\checkmark^{\dagger}	
Chlorine	NSW TM-7	Ektimo 235	14%	✓	\checkmark^{\dagger}	
		ALS Method QWI-EN/EA144C				
Fluorine	NSW TM-9	&	25%	✓	✓ ^{#,†}	
		Ektimo 240				
Hydrogen chloride	NSW TM-8	Ektimo 235	14%	✓	\checkmark^{\dagger}	
Solid particles (total)	NSW TM-15	NSW TM-15 ⁺⁺	3%	✓	~	
Sulfuric acid mist and/or sulfur trioxide	NSW TM-3	Ektimo 235	16%	✓	\checkmark^{\dagger}	
Total (gaseous and particulate) metals and	NSW TM-12, NSW TM-13, NSW	Envirolab inhouse Metals-				
metallic compounds	TM-14	006, Metals-022, Metals-021	15%	\checkmark	✓‡	
		Envirolab inhouse Metals-		,	√ [‡]	
Type 1 substances (Sb, As, Cd, Pb, Hg)	NSW TM-12	006, Metals-022, Metals-021	15%	\checkmark	√*	
ype 2 substances (Be, Cr, Co, Mn, Ni, Se, Sn, V)		Envirolab inhouse Metals-	450/	1	√ ‡	
ype z substances (be, ci, co, ivin, ivi, se, sn, v)	NSW TM-13	006, Metals-022	15%	v	V	
Smoke	NSW TM-16	NA	not specified	NA	✓	

* Uncertainty values cited in this table are calculated at the 95% confidence level (coverage factor = 2)

Analysis conducted at the Ektimo Mitcham, VIC laboratory, NATA accreditation number 14601. Results were reported on 5 March 2021 in report number LV-001163.
16 March 2021 in report number LV-001201.
16 March 2021 in report number LV-001190.
18 March 2021 in report number LV-001211.
18 March 2021 in report number R010598-ISE F.

^{††} Gravimetric analysis conducted at the Ektimo Unanderra, NSW laboratory, NATA accreditation number 14601.

- [‡] Analysis performed by Envirolab, NATA accreditation number 2901. Results were reported to Ektimo on 2 March 2021 in report number 263156.
- [#] Analysis (solid fluoride only) performed by Australian Laboratory Services Pty Ltd, NATA accreditation number 825. Results were reported to Ektimo on 15 March 2021 in report number EN2101736.
- d Excludes recovery study as specified in section 8.4.3 of USEPA Test Method 18.

5 QUALITY ASSURANCE/QUALITY CONTROL INFORMATION

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website <u>www.nata.com.au</u>.

Ektimo is accredited by NATA (National Association of Testing Authorities) to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

NATA is a member of APLAC (Asia Pacific Laboratory Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through the mutual recognition arrangements with both of these organisations, NATA accreditation is recognised worldwide.

6 DEFINITIONS

The following symbols and abbreviations may be used in this test report:

% v/v	Volume to volume ratio, dry or wet basis
~	Approximately
	Less than
< >	Greater than
ž	Greater than or equal to
APHA	American public health association, Standard Methods for the Examination of Water and Waste Water
AS	Australian Standard
BSP	British standard pipe
CARB	Californian Air Resources Board
CEM	Continuous Emission Monitoring
CEMS	Continuous Emission Monitoring System
CTM	Conditional test method
D	Duct diameter or equivalent duct diameter for rectangular ducts
D D ₅₀	'Cut size' of a cyclone defined as the particle diameter at which the cyclone achieves a 50% collection efficiency ie.
	half of the particles are retained by the cyclone and half are not and pass through it to the next stage. The D_{50} method
	simplifies the capture efficiency distribution by assuming that a given cyclone stage captures all of the particles with
DECC	a diameter equal to or greater than the D_{50} of that cyclone and less than the D_{50} of the preceding cyclone.
DECC	Department of Environment & Climate Change (NSW)
Disturbance	A flow obstruction or instability in the direction of the flow which may impede accurate flow determination. This includes centrifugal fans, axial fans, partially closed or closed dampers, louvres, bends, connections, junctions,
	direction changes or changes in pipe diameter.
DWER	Department of Water and Environmental Regulation (WA)
DEHP	Department of Environment and Heritage Protection (QLD)
EPA	Environment Protection Authority
FTIR	Fourier Transform Infra-red
ISC	Intersociety committee, Methods of Air Sampling and Analysis
ISO	International Organisation for Standardisation
Lower Bound	Defines values reported below detection as equal to zero.
Medium Bound	Defines values reported below detection are equal to half the detection limit.
NA	Not applicable
NATA	National Association of Testing Authorities
NIOSH	National Institute of Occupational Safety and Health
NT	Not tested or results not required
OM	Other approved method
OU	The number of odour units per unit of volume. The numerical value of the odour concentration is equal to the number of dilutions to arrive at the odour threshold (50% panel response).
PM ₁₀	Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately
	10 microns (μm).
PM _{2.5}	Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately
	2.5 microns (μm).
PSA	Particle size analysis
RATA	Relative Accuracy Test Audit
Semi-quantified VOCs	Unknown VOCs (those not matching a standard compound), are identified by matching the mass spectrum of the
	chromatographic peak to the NIST Standard Reference Database (version 14.0), with a match quality exceeding 70%.
	An estimated concentration will be determined by matching the integrated area of the peak with the nearest suitable
	compound in the analytical calibration standard mixture.
STP	Standard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0°C, at
	discharge oxygen concentration and an absolute pressure of 101.325 kPa, unless otherwise specified.
TM	Test Method
тос	The sum of all compounds of carbon which contain at least one carbon to carbon bond, plus methane and its
	derivatives.
USEPA	United States Environmental Protection Agency
VDI	Verein Deutscher Ingenieure (Association of German Engineers)
Velocity Difference	The percentage difference between the average of initial flows and afterflows.
Vic EPA	Victorian Environment Protection Authority
VOC	Any chemical compound based on carbon with a vapour pressure of at least 0.010 kPa at 25°C or having a
	corresponding volatility under the particular conditions of use. These compounds may contain oxygen, nitrogen and
	other elements, but specifically excluded are carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and
VDD	carbonate salts.
XRD	X-ray Diffractometry
Upper Bound	Defines values reported below detection are equal to the detection limit.
95% confidence interval	Range of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result is outside this range.
	is outside this range.

NATA

7 APPENDIX 1: SITE LOCATIONS

EPA 4 – DC1 Baghouse

EPA 5 – DC2 Baghouse

EPA 7 – Conti 2 Stage 1 Dryer Cyclone 1 (West) & EPA 8 – Conti 2 Stage 1 Dryer Cyclone 2 (East)

EPA 9 – Conti 1 Dryer Cyclone 1 (South) & EPA 10 – Conti 1 Dryer Cyclone 2 (North)

EPA 12 – Conti 1 Press Vents (1, 2, 3, 4)

EPA 27 – Combined Conti 2 Press Vent Stack

EPA 29 – Forming Line Baghouse

EPA 30 – Foam Station Baghouse

EPA 31 – Particle Board Press Extraction System

EPA 32 - WESP

Cogeneration Plant 1 Stack & Cogeneration Plant 2 Stack

Address (Head Office) 7 Redland Drive Mitcham VIC 3132

Postal Address 52 Cooper Road Cockburn Central WA 6164

> Office Locations VIC NSW WA QLD

Freecall: 1300 364 005 www.ektimo.com.au ABN 86 600 381 413

Appendix C – Surface Water Monitoring Data

SURFACE WATER MONITORING EPL POINT 1

SAMPLE DATE	рН	TSS	True Colour	Total N	Total P	Oil & Grease	BOD	MBAS mg/l	Aldrin µg/l	Dieldrin µg/l
		mg/l	hazen	mg/l	mg/l	mg/l	mg/l			
04-May-20	7.36	17	30	1.4	0.06	5	4	0.1	0.01	0.01
03.June-20	8.11	11	20	1.1	0.05	5	2	0.1	0.01	0.01
15-Jun-20	7.36	78	24	1.2	0.09	5	3	0.1	0.01	0.01
25-Jun-20	8.03	24	15	1.3	0.07	5	2	0.1	0.01	0.01
01-Jul-20	7.83	10	20	1	0.1	5	2	0.1	0.01	0.01
08-Jul-20	7.68	14	20	1.1	0.02	5	2	0.1	0.01	0.01
15-Jul-20	7.67	7	20	1.2	0.06	5	2	0.2	0.01	0.01
20-Jul-20	7.97	5	15	1.2	0.01	5	2	0.1	0.01	0.01
29-Jul-20	7.65	50	50	1.4	0.11	5	5	0.1	0.01	0.01
6-Aug-20	7.98	13	20	1.1	0.04	5	2	0.1	0.01	0.01
11-Aug-20	7.5	28	20	1.4	0.08	5	6	0.1	0.01	0.01
19-Aug-20	7.46	15	25	1.3	0.06	5	3	0.1	0.01	0.01
26-Aug-20	7.44	8	80	1.9	0.08	5	4	0.1	0.01	0.01
1-Sep-20	7.73	7	45	1.8	0.04	5	2	0.1	0.01	0.01
9-Sep-20	7.72	5	35	1.8	0.03	5	3	0.1	0.01	0.01
16-Sep-20	7.88	8	45	1.5	0.03	5	2	0.1	0.01	0.01
23-Sep-20	6.89	22	100	2.1	0.08	5	32	0.1	0.01	0.01
30-Sep-20	7.3	6	50	1.3	0.03	5	2	0.1	0.01	0.01
8-Oct-20	8.01	9	30	1	0.01	5	2	0.1	0.01	0.01
14-Oct-20	7.02	6	30	0.9	0.03	5	3	0.1	0.01	0.01
21-Oct-20	8.86	10	45	0.9	0.01	5	2	0.1	0.01	0.01
28-Oct-20	7.92	14	100	1.6	0.06	5	4	0.1	0.01	0.01
19-Nov-20	6.82	33	45	1.1	0.06	5	2	0.1	0.01	0.01
25-Nov-20	6.86	41	50	1.2	0.07	5	5	0.1	0.01	0.01
2-Dec-20	7.95	31	30	1.7	0.08	5	3	0.1	0.01	0.01
9-Dec-20	7.78	10	50	1	0.03	5	2	0.1	0.01	0.01
16-Dec-20	7.23	13	1	1.9	0.04	5	3	0.1	0.01	0.01

Annual Review 2020/21 - Borg Panels, Oberon

DATE	рН	TSS	True Colour	Total N	Total P	Oil & Grease	BOD	MBAS	Aldrin	Dieldrin
SURFACE WATE		ORING EP	L POINT 28	1			T			T
28-Apr-21	7.9	22	14	1.1	0.02	5	2	0.1	0.01	0.01
20-Apr-21	6.59	15	20	1	0.02	5	2	0.1	0.01	0.01
14-Apr-21	8.14	20	40	1	0.04	5	2	0.1	0.01	0.01
31-Mar-21	7.98	12	100	1.8	0.09	5	2	0.1	0.01	0.01
24-Mar-21	7.6	22	150	1.6	0.007	5	2	0.1	0.01	0.01
16-Mar-21	7.95	23	125	0.9	0.05	15	2	0.1	0.01	0.01
9-Mar-21	7.81	43	25	0.8	0.06	5	2	0.1	0.01	0.01
4-Mar-21	7.95	36	30	1	0.05	5	2	0.1	0.01	0.01
24-Feb-21	7.55	656	30	2.3	0.24	5	2	0.1	0.01	0.01
17-Feb-21	7.45	48	50	0.9	0.07	5	2	0.1	0.01	0.01
10-Feb-21	7.44	40	30	1.1	0.06	5	3	0.1	0.01	0.01
1-Feb-21	7.68	27	40	1.5	0.05	5	5	0.1	0.01	0.01
20-Jan-21	8.63	6	40	0.9	0.03	5	3	0.1	0.01	0.01
12-Jan-21	6.58	14	50	1	0.06	5	2	0.1	0.01	0.01
4-Jan-21	7.42	18	50	1.6	0.02	5	2	0.1	0.01	0.01
21-Dec-20	7.08	47	25	1.2	0.08	5	4	0.1	0.01	0.01

DATE	рН	TSS	True Colour	Total N	Total P	Oil & Grease	BOD	MBAS	Aldrin	Dieldrin
28-Oct-20	7.96	27	70	6.2	0.07	5	8	0.1	0.01	0.01
4-Nov-20	7.51	8	110	6.3	0.03	5	18	0.2	0.01	0.01
4-Jan-21	7.71	23	55	3.8	0.04	5	2	0.1	0.01	0.01
2-Feb-21	7.53	22	30	4.8	0.06	5	16	0.1	0.01	0.01
10-Feb-21	7.9	12	60	11.9	0.08	5	6	0.1	0.01	0.01
17-Feb-21	7.4	34	70	15.8	0.13	7	4	0.1	0.01	0.01
24-Feb-21	7.93	12	70	15.5	0.07	5	2	0.1	0.01	0.01
16-Mar-21	7.79	34	70	8.3	0.14	11	5	0.1	0.01	0.01
24-Mar-21	7.54	54	75	5.2	0.14	5	9	0.1	0.01	0.01
31-Mar-21	7.89	9	75	6.4	0.14	5	4	0.1	0.01	0.01

Exceedance of EPL 3035 discharge limit

Appendix D – Groundwater Monitoring Data

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

ALS WATER ANALYSIS AND TESTING REPORT

REPORT TO: Victor Bendevski

REPORT ON:

Borg Panels, Oberon **Bore Monitoring Results**

REPORT NO:

L. Pyne & E. Felton

24006973-09

REPORTED BY:

SAMPLED BY:

T.MacPhee

eev

Stephanie Thompson **Environmental Sampling Supervisor**

Accreditation # 15784 11436

Accredited for compliance with ISO/IEC 17025. This document will not be reproduced except in full.

Site #

ACIRL Pty Ltd ABN 41 000 513 888 Part of the ALS Laboratory Group Unit 3, 16 Donald Street LITHGOW NSW 2790 Phone +61 2 6350 7400 Fax +61 2 6352 3583 www.alsglobal.com A Campbell Brothers Limited Company

ALS WATER ANALYSIS AND TESTING REPORT

BORG PANELS

	Units								
ALS Sydney Report No.		ES2032433							
Date of Sample		11/09/2020	11/09/2020	11/09/2020	11/09/2020	11/09/2020			
Site Name #1		GW01	GW02	GW05	GW26	GW26			
Site Name #2		Woodchem	Pond	Hill	Paddock - River	Paddock - Fence			
		Weedenen	, ond						
General Comments/ Observations		Cloudy	Clear	Cloudy	Dry	Cloudy			
Temperature	°C	13.4	13.7	25.0		14.0			
рН	pH Units	6.3	7.1	6.8		7.3			
Electrical Conductivity	µS/cm	257	1040	220		421			
Total Suspended Solids	mg/L	173	45	606		142			
Total Dissolved Solids	mg/L	200	690	210		264			
Water Height	m	0.86	0.98	1.09		5.89			
Ammonia as N by Discrete Analyser									
Ammonia as N	mg/L	0.02	<0.01	0.02		<0.01			
Total Organic Carbon (TOC)			•	•	• •	•			
Total Organic Carbon	mg/L	6	3	3		148			
Formaldehyde			•	•		•			
Formaldehyde	mg/L	0.3	0.1	0.2		0.1			
Chemical Oxygen Demand (Spectro	photometr	ic)	•	•		•			
Chemical Oxygen Demand	mg/L	26	<10	25		182			
Organochlorine Pesticides (OC)	<u> </u>		•	•		•			
alpha-BHC	μg/L	<0.5	<0.5	<0.5		<0.5			
Hexachlorobenzene (HCB)	μg/L	<0.5	<0.5	<0.5		<0.5			
beta-BHC	µg/L	<0.5	<0.5	<0.5		<0.5			
gamma-BHC	μg/L	<0.5	<0.5	<0.5		<0.5			
delta-BHC	μg/L	<0.5	<0.5	<0.5		<0.5			
Heptachlor	μg/L	<0.5	<0.5	<0.5		<0.5			
Aldrin	μg/L	<0.5	<0.5	<0.5		<0.5			
Heptachlor epoxide	μg/L	<0.5	<0.5	<0.5		<0.5			
trans-Chlordane	µg/L	<0.5	<0.5	<0.5		<0.5			
alpha-Endosulfan	μg/L	<0.5	<0.5	<0.5		<0.5			
cis-Chlordane	µg/L	<0.5	<0.5	<0.5		<0.5			
Dieldrin	µg/L	<0.5	<0.5	<0.5		<0.5			
4.4`-DDE	μg/L	<0.5	<0.5	<0.5		<0.5			
Endrin	µg/L	<0.5	<0.5	<0.5		<0.5			
beta-Endosulfan	µg/L	<0.5	<0.5	<0.5		<0.5			
4.4`-DDD	µg/L	<0.5	<0.5	<0.5		<0.5			
Endrin aldehyde	μg/L	<0.5	<0.5	<0.5		<0.5			
Endosulfan sulfate	μg/L	<0.5	<0.5	<0.5	1	<0.5			
4.4`-DDT	µg/L	<2.0	<2.0	<2.0		<2.0			
Endrin ketone	μg/L	<0.5	<0.5	<0.5	1	<0.5			
Methoxychlor	μg/L	<2.0	<2.0	<2.0	1	<2.0			
Total Chlordane (sum)	μg/L	<0.5	<0.5	<0.5	1	<0.5			
Sum of DDD + DDE + DDT	μg/L	<0.5	< 0.5	<0.5		<0.5			
Sum of Aldrin + Dieldrin	μg/L	<0.5	<0.5	<0.5		<0.5			

ALS WATER ANALYSIS AND TESTING REPORT

BORG PANELS

	Units					
ALS Sydney Report No.				ES2032433		
Date of Sample		11/09/2020	11/09/2020	11/09/2020	11/09/2020	11/09/2020
Site Name #1		GW01	GW02	GW05	GW26	GW26
Site Name #2		Woodchem	Pond	Hill	Paddock - River	Paddock - Fenc
Organochlorine Pesticide Surrogate					<u> </u>	1
Dibromo-DDE	%	78.0	85.6	91.2		85.4
Organophosphorus Pesticide Surroga	te				•	1
DEF	%	73.2	80.3	80.3		77.8
Total Petroleum Hydrocarbons					•	<u>8</u>
C6 - C9 Fraction	µg/L	<20	<20	<20		2680
C10 - C14 Fraction	µg/L	<50	<50	<50		<50
C15 - C28 Fraction	µg/L	<100	<100	<100		<100
C29 - C36 Fraction	µg/L	<50	<50	<50		<50
C10 - C36 Fraction (sum)	µg/L	<50	<50	<50		<50
Total Recoverable Hydrocarbons - NE	PM 2013	Fractions			•	•
C6 - C10 Fraction	µg/L	<20	<20	<20		2610
C6 - C10 Fraction minus BTEX (F1)	µg/L	<20	<20	<20		2600
>C10 - C16 Fraction	µg/L	<100	<100	<100		<100
>C16 - C34 Fraction	µg/L	<100	<100	<100		<100
>C34 - C40 Fraction	µg/L	<100	<100	<100		<100
>C10 - C40 Fraction (sum)	µg/L	<100	<100	<100		<100
>C10 - C16 Fraction minus Naphthalene	µg/L	<100	<100	<100		<100
BTEXN					-	-
Benzene	µg/L	<1	<1	<1		<1
Toluene	µg/L	<2	<2	<2		6
Ethylbenzene	µg/L	<2	<2	<2		<2
meta- & para-Xylene	µg/L	<2	<2	<2		<2
ortho-Xylene	µg/L	<2	<2	<2		<2
Total Xylenes	μg/L	<2	<2	<2		<2
Sum of BTEX	µg/L	<1	<1	<1		6
Naphthalene	µg/L	<5	<5	<5		<5
TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	%	94.7	96.2	96.8		96.4
Toluene-D8	%	113	109	109		112
4-Bromofluorobenzene	%	109	109	105		114

METHODS OF WATER ANALYSIS

NATA accreditation covers the following test

TEST	METHOD	Measure of Uncertainty
Electrical Conductivity uS/cm	APHA 2510 B	2.0%
pH value	APHA 4500 H	0.10 pH Units
Total Suspended Solids (mg/l)	APHA 2540 D	± 5.0%
Total Dissolved Soilds (mg/l)	APHA 2540 C	± 8.8%

* NATA Accreditation does not cover the performance of this test.

	TEST	
* Temperature Field		

The remaining analysis performed at ALS Environmental, 277-289 Woodpark Rd, Smithfield, NSW 2164.

In accordance with "Standard Methods for the Examination of Water & Wastewater" APHA, AWWA, WEF and Water & Wastewater Examination Manual (V. Dean Adams)

ALS Report No:

ES2032433

Preservation procedures in accordance with AS/NZS 5667/1 when sampled by ACIRL staff unless otherwise stated.

Appendix E – Annual Noise Monitoring Report

Borg Panels Facility

Environmental Noise Monitoring Quarter 2 and Annual 2020

Prepared for Borg Manufacturing Pty Ltd

Noise and Vibration Analysis and Solutions

Global Acoustics Pty Ltd PO Box 3115 | Thornton NSW 2322 Telephone +61 2 4966 4333 Email global@globalacoustics.com.au ABN 94 094 985 734

Borg Panels Facility

Environmental Noise Monitoring Quarter 2 and Annual 2020

Reference: 20153_R01 Report date: 19 August 2020

Prepared for

Borg Manufacturing Pty Ltd 124 Lowes Mount Road Oberon 2787 NSW

Prepared by

Global Acoustics Pty Ltd PO Box 3115 Thornton NSW 2322

Line

Reff Une.

Prepared:

Tambalyn Durney Consultant

QA Review: Robert Kirwan Consultant

Global Acoustics Pty Ltd ~ Environmental noise modelling and impact assessment ~ Sound power testing ~ Noise control advice ~ Noise and vibration monitoring ~ OHS noise monitoring and advice ~ Expert evidence in Land and Environment and Compensation Courts ~ Architectural acoustics ~ Blasting assessments and monitoring ~ Noise management plans (NMP) ~ Sound level meter and noise logger sales and hire

Table of Contents

1 INTRODUCTION	1
1.1 Background	1
1.2 Monitoring Locations	1
1.3 Terminology & Abbreviations	
2 REGULATOR REQUIREMENTS AND NOISE CRITERIA	4
2.1 Development Consent	4
2.2 Environment Protection Licence	4
2.3 Noise Management Plan	4
2.4 Noise Criteria	4
2.5 Meteorological Conditions	5
2.6 Modifying Factors	5
3 METHODOLOGY	6
3.1 Overview	6
3.2 Attended Noise Monitoring	6
3.3 Modifying Factors	7
3.4 Monitoring Equipment	7
4 RESULTS	
4.1 Total Measured Noise Levels	
4.2 Modifying Factors	8
4.3 Attended Noise Monitoring	9
4.4 Atmospheric Conditions	
5 SUMMARY	

Appendices

A	REGULATOR DOCUMENTS	.12
B	CALIBRATION CERTIFICATES	.23

1 INTRODUCTION

1.1 Background

Global Acoustics was engaged by Borg Manufacturing Pty Ltd to conduct a noise survey of operations and construction at the Borg panel manufacturing facility (Borg) near Oberon, NSW. The purpose of the survey was to quantify and describe the acoustic environment around the site and compare results with specified limits.

Attended environmental noise monitoring described in this report was undertaken during the day, evening, and night periods of 24 June 2020 at four monitoring locations around Borg.

1.2 Monitoring Locations

Monitoring locations are detailed in Table 1.1 and shown in Figure 1. It should be noted that Figure 1 shows the actual monitoring position, not the location of residences.

Report Descriptor	Monitoring Location
NM1	Oberon Caravan Park
NM2	Intersection of Pine Street and Herborn Street
NM3	127 Hazelgrove Road
NM4	Intersection of Tasman Street and Earl Street

Table 1.1: ATTENDED MONITORING LOCATIONS

Figure 1: Attended Noise Monitoring Locations

Global Acoustics Pty Ltd | PO Box 3115 | Thornton NSW 2322 Telephone +61 2 4966 4333 | Email global@globalacoustics.com.au ABN 94 094 985 734

1.3 Terminology & Abbreviations

Some definitions of terms and abbreviations which may be used in this report are provided in Table 1.2.

Table 1.2: TERMINOLOGY & ABBREVIATIONS

Descriptor	Definition					
dB(A)	Noise level measurement units are decibels (dB). The "A" weighting scale is used to describe human response to noise.					
L _{Amax}	The maximum A-weighted noise level over a time period.					
L _{A1}	The noise level which is exceeded for 1 per cent of the time.					
LA1,1minute	The noise level which is exceeded for 1 per cent of the specified time period of 1 minute.					
LA10	The noise level which is exceeded for 10 percent of the time.					
L _{Aeq}	The average noise A-weighted energy during a measurement period.					
L _{A50}	The noise level which is exceeded for 50 per cent of the time and the median noise level during a measurement period.					
L _{A90}	The level exceeded for 90 percent of the time. The L_{A90} level is often referred to as the "background" noise level and is commonly used to determine noise criteria for assessment purposes.					
L _{Amin}	The minimum A-weighted noise level over a time period.					
L _{Ceq}	The average C-weighted noise energy during a measurement period. The "C" weighting scale is used to take into account low-frequency components of noise within the audibility range of humans.					
SPL	Sound pressure level. Fluctuations in pressure measured as 10 times a logarithmic scale, with the reference pressure being 20 micropascals.					
Hertz (Hz)	The frequency of fluctuations in pressure, measured in cycles per second. Most sounds are a combination of many frequencies together.					
AWS	Automatic weather station used to collect meteorological data, typically at an altitude of 10 metres					
VTG	Vertical temperature gradient in degrees Celsius per 100 metres altitude.					
Sigma-theta	The standard deviation of the horizontal wind direction over a period of time.					
SC	Stability class (or category) is determined from measured wind speed and either sigma-theta or VTG.					
IA	Inaudible. When site noise is noted as IA then there was no site noise at the monitoring location.					
NM	Not Measurable. If site noise is noted as NM, this means some noise was audible but could not be quantified.					
Day	This is the period 7:00am to 6:00pm.					
Evening	This is the period 6:00pm to 10:00pm.					
Night	This is the period 10:00pm to 7:00am.					

2 REGULATOR REQUIREMENTS AND NOISE CRITERIA

2.1 Development Consent

The most current development consent associated with activities at Borg is Development Consent SSD 7016 (the consent), most recently modified 29 November 2019 (MOD 2). The sections of the consent relating to noise are reproduced in Appendix A.

2.2 Environment Protection Licence

Borg holds Environment Protection Licence (EPL) No. 3035 issued by the Environment Protection Authority (EPA) most recently on 4 September 2019. Relevant sections of the EPL are reproduced in Appendix A.

2.3 Noise Management Plan

Noise monitoring requirements are detailed in the Borg Operational Noise Management Plan (ONMP) and Construction Noise Management Plan (CNMP). The most recent version of the ONMP was approved in December 2017. The most recent version of the CNMP was approved in June 2017. Relevant sections of the ONMP and CNMP are reproduced in Appendix A.

2.4 Noise Criteria

Noise limits are consistent between the consent and EPL and have been reproduced in Table 2.1 below.

Table 2.1: IMPACT ASSESSMENT CRITERIA

Location	Day L _{Aeq} ,15minute dB	Evening L _{Aeq} ,15minute dB	Night L _{Aeq,} 15minute dB
All sensitive receivers	55	50	45

Construction noise criteria for each monitoring location are detailed in Table 2.2 and Table 2.3.

Report Descriptor	Day L _{Aeq,15minute} dB	Evening L _{Aeq,15minute} dB	Night LAeq,15minute dB
NM1	55	50	45
NM2	55	50	45
NM3	55	50	45
NM4	55	50	45

Table 2.2: GENERAL CONSTRUCTION NOISE LIMITS

Table 2.3: ROCK/CONCRETE BREAKING NOISE LIMITS

Report Descriptor	Day L _{Aeq,15minute} dB
NM1	75
NM2	75
NM3	75
NM4	75

2.5 Meteorological Conditions

As described in the consent, noise generated by Borg is to be measured in accordance with the relevant procedures and exemptions (including certain meteorological conditions) of the NSW Industrial Noise Policy (INP), as follows:

- during rain and wind speeds greater than 3 metres/second at 10 metres above ground level; or
- stability category F temperature inversion conditions and wind speeds greater than 2 metres/second at 10 metres above ground level; or
- stability category G temperature inversion conditions.

2.6 Modifying Factors

The EPA 'Noise Policy for Industry' (NPfI, 2017) was approved for use in NSW in October 2017. For assessment of modifying factors, the NPfI immediately superseded the 'Industrial Noise Policy' (INP, 2000), as outlined in the EPA document 'Implementation and transitional arrangements for the Noise Policy for Industry' (2017). Assessment and reporting of modifying factors has been undertaken in accordance with Fact Sheet C of the NPfI.

3 METHODOLOGY

3.1 Overview

Attended environmental noise monitoring was conducted in general accordance with Australian Standard AS1055 'Acoustics, Description and Measurement of Environmental Noise', relevant NSW EPA requirements, and the Borg ONMP and CNMP. Meteorological data was obtained from the Borg automatic weather station (AWS) which allowed correlation of atmospheric parameters with measured noise levels.

3.2 Attended Noise Monitoring

During this survey, attended monitoring was undertaken during the day, evening and night period at each location. The duration of each measurement was 15 minutes. Atmospheric condition measurement was also undertaken at each monitoring location.

This survey presents noise levels gathered during attended monitoring that are the result of many sounds reaching the sound level meter microphone during monitoring. Received levels from various noise sources were noted during attended monitoring and particular attention was paid to the extent of Borg's contribution, if any, to measured levels. At each receptor location, Borg's L_{Aeq,15minute} and L_{A1,1minute} (in the absence of any other noise) was measured directly, where possible, or, determined by frequency analysis.

If the exact contribution of the source of interest (in this case Borg) cannot be established, due to masking by other noise sources in a similar frequency range, but site noise levels are observed to be well below (more than 5 dB lower than) any relevant criterion, a maximum estimate of the potential contribution of the site might be made based on other measured site-only noise descriptors in accordance with Section 7.1 of the NPfI. This is generally expressed as a 'less than' quantity, such as <20 dB or <30 dB.

The terms 'Inaudible' (IA) or 'Not Measurable' (NM) may also be used in this report. When site noise is noted as IA, no site noise was audible at the monitoring location. When site noise is noted as NM, this means some noise was audible but could not be quantified. If site noise was NM due to masking but estimated to be significant in relation to a relevant criterion, we would employ methods (e.g. measure closer and back calculate) to determine a value for reporting.

All sites noted as NM in this report are due to one or more of the following reasons:

- Site noise levels were extremely low and unlikely, in many cases, to be even noticed;
- Site noise levels were masked by another relatively loud noise source that is characteristic of the environment (e.g. breeze in foliage or continuous road traffic noise) that cannot be eliminated by moving closer; and/or
- It was not feasible, nor reasonable to employ methods such as move closer and back calculate. Cases

may include, but are not limited to, rough terrain preventing closer measurement, addition/removal of significant source to receiver shielding caused by moving closer, and meteorological conditions where back calculation may not be accurate.

A measurement of $L_{A1,1minute}$ corresponds to the highest noise level generated for 0.6 second during one minute. In practical terms this is the highest noise level, or L_{Amax} , received from the site during the entire measurement period (i.e. the highest level of the worst minute during the 15 minute measurement).

Often extraneous noise events (for example, road traffic pass-bys and dogs) interfere with the measurement of site noise levels in the frequency range of interest. Where required, the sound level meter is paused during these occurrences to aid in quantification of the site only $L_{Aeq,15minute}$ level.

3.3 Modifying Factors

All measurements were evaluated for potential modifying factors in accordance with the NPfI. Specific methodology for assessment of each modifying factor is outlined in Fact Sheet C of the NPfI.

Assessment of modifying factors is undertaken at the time of measurement if the site was audible and directly quantifiable, such that the site-only L_{Aeq} was not "NM" or less than a maximum cut off value (e.g. "<20 dB" or "<30 dB").

If applicable, modifying factors have been reported and added to measured site-only L_{Aeq} noise levels when meteorological conditions satisfied requirements for site noise criteria to be applicable. Low-frequency modifying factors have only been applied to site-only L_{Aeq} levels if Borg was the only contributing lowfrequency noise source.

3.4 Monitoring Equipment

Table 3.1 lists the equipment used to measure environmental noise levels. Calibration certificates are provided in Appendix B.

Table 3.1: ATTENDED NOISE MONITORING EQUIPMENT

Model	Serial Number	Calibration Due Date
Rion NA-28 sound level analyser	30131882	05/02/2021
Pulsar 105 acoustic calibrator	78226	11/03/2022

4 RESULTS

4.1 Total Measured Noise Levels

Overall noise levels measured at each location during attended measurements are provided in Table 4.1.

Location	Start Date and Time	L _{Amax} dB	L _{A1} dB	L _{A10} dB	L _{Aeq} dB	L _{A50} dB	L _{A90} dB	L _{Amin} dB	L _{Ceq} dB
NM1	24/06/2020 15:02	79	61	52	52	47	45	42	65
NM1	24/06/2020 20:28	57	48	44	43	42	41	40	59
NM1	24/06/2020 22:49	57	47	45	44	43	42	39	59
NM2	24/06/2020 15:27	66	60	51	49	46	43	39	62
NM2	24/06/2020 20:49	54	47	41	39	38	36	33	59
NM2	24/06/2020 23:14	50	43	41	39	38	37	34	58
NM3	24/06/2020 16:14	72	61	48	49	43	41	38	61
NM3	24/06/2020 19:45	53	42	40	38	38	36	34	53
NM3	24/06/2020 22:01	55	49	45	42	41	38	36	55
NM4	24/06/2020 14:38	68	58	45	46	40	38	36	58
NM4	24/06/2020 20:07	48	43	36	34	32	30	28	51
NM4	24/06/2020 22:25	48	41	36	34	32	31	29	52

Table 4.1: MEASURED NOISE LEVELS – QUARTER 2 AND ANNUAL 2020¹

Notes:

1. Levels in this table are not necessarily the result of activity at Borg.

4.2 Modifying Factors

Modifying factors, as defined in the NPfI, were not applicable during the time of monitoring.

4.3 Attended Noise Monitoring

Table 4.2 compares measured LAeq,15minute levels from Borg with the project specific noise criteria.

Location	Start Date and Time	Wind Speed m/s	Stability Class	Criterion dB	Criterion Applies? ¹	Borg L _{Aeq,15min} dB ²	Exceedance ^{3,4}
NM1	24/06/2020 15:02	3.6	D	55	No	46	NA
NM1	24/06/2020 20:28	2.2	E	50	Yes	42	Nil
NM1	24/06/2020 22:49	2.9	D	45	Yes	43	Nil
NM2	24/06/2020 15:27	3.0	D	55	Yes	46	Nil
NM2	24/06/2020 20:49	2.2	Е	50	Yes	38	Nil
NM2	24/06/2020 23:14	2.6	D	45	Yes	<30	Nil
NM3	24/06/2020 16:14	5.1	D	55	No	42	NA
NM3	24/06/2020 19:45	2.7	D	50	Yes	37	Nil
NM3	24/06/2020 22:01	3.2	D	45	No	39	NA
NM4	24/06/2020 14:38	3.0	С	55	Yes	38	Nil
NM4	24/06/2020 20:07	2.7	D	50	Yes	31	Nil
NM4	24/06/2020 22:25	2.8	Е	45	Yes	32	Nil

Table 4.2: LAea.15minute GENERATED BY BORG AGAINST CRITERIA – QUARTER 2 AND ANNUAL 2020

Notes:

1. Noise criteria apply under all meteorological conditions except the following:

- Wind speeds greater than 3 m/s at 10 metres above ground level; or

- Stability class F temperature inversion conditions, and wind speeds greater than 2 m/s at 10 metres above ground level; or - Stability class G temperature inversion conditions.

2. Site-only LAeq,15minute attributed to Borg, including modifying factors if applicable;

3. Bold results in red indicate exceedance of criterion (if applicable); and

4. NA in exceedance column means atmospheric conditions outside conditions specified, therefore criterion was not applicable.

4.4 Atmospheric Conditions

Atmospheric condition data measured by the operator during each measurement using a Kestrel hand-held weather meter is shown in Table 4.3. The wind speed, direction and temperature were measured at approximately 1.8 metres. Attended noise monitoring is not undertaken during rain, hail, or wind speeds above 5 m/s at microphone height.

Location	Start Date and Time	Temperature ° C	Wind Speed m/s	Wind Direction ° Magnetic North ¹	Cloud Cover 1/8s
NM1	24/06/2020 15:02	7	0.7	220	8
NM1	24/06/2020 20:28	5	0.9	180	8
NM1	24/06/2020 22:49	5	0.0	-	8
NM2	24/06/2020 15:27	7	0.7	170	8
NM2	24/06/2020 20:49	5	1.4	190	8
NM2	24/06/2020 23:14	5	1.0	260	8
NM3	24/06/2020 16:14	5	2.1	190	8
NM3	24/06/2020 19:45	5	0.7	190	8
NM3	24/06/2020 22:01	5	0.6	245	8
NM4	24/06/2020 14:38	7	0.7	190	8
NM4	24/06/2020 20:07	5	0.4	280	0
NM4	24/06/2020 22:25	6	0.0	-	8

Table 4.3: MEASURED ATMOSPHERIC CONDITIONS – QUARTER 2 AND ANNUAL 2020

Notes:

1. "-" indicates calm conditions at monitoring location.

Meteorological data used for compliance assessment is sourced from the Borg AWS.

5 SUMMARY

Global Acoustics was engaged by Borg Manufacturing Pty Ltd to conduct a noise survey of operations at the Borg panel manufacturing facility (Borg) near Oberon, NSW. The purpose of the survey was to quantify and describe the acoustic environment around the site and compare results with specified limits.

Attended environmental noise monitoring described in this report was undertaken during the day, evening, and night periods of 24 June 2020 at four monitoring locations around Borg.

Borg operations complied with the relevant criteria during the Quarter 2 and Annual 2020 survey at all monitoring locations.

Criteria may not always be applicable due to meteorological conditions at the time of monitoring.

Global Acoustics Pty Ltd

APPENDIX

A **REGULATOR DOCUMENTS**

A.1 DEVELOPMENT CONSENT SSD 7016

NOISE

Hours of Work

B13. The Applicant must comply with the hours detailed in **Table 1**, unless otherwise agreed in writing by the-Secretary.

Table 1: Hours of Work

Activity	Day	Time
Earthworks and Construction	Monday – Friday Saturday	7 am to 7 pm 8 am to 1 pm
Operation	Monday – Sunday	24 hours

- B14. Works outside of the hours identified in Condition B13 may be undertaken in the following circumstances:
 - (a) works that are inaudible at the nearest sensitive receivers;
 - (b) works agreed to in writing by the Secretary;
 - (c) for the delivery of materials required outside these hours by the NSW Police Force or other authorities for safety reasons; or
 - (d) where it is required in an emergency to avoid the loss of lives, property and/or to prevent environmental harm.

Construction Noise Management Plan

- B15. The Applicant must prepare a Construction Noise Management Plan (CNMP) for the Project to manage construction noise. The plan must form part of the CEMP required by Condition C1 and must:
 - (a) be prepared by a suitably qualified and experienced noise expert;
 - (b) be approved by the Secretary prior to the commencement of construction of the Project;
 - (c) describe procedures for achieving the noise limits in Table 2;
 - (d) describe the measures to be implemented to manage noisy works such as rock/concrete breaking activities, in close proximity to sensitive receivers;
 - (e) include strategies that have been developed with the community for managing noisy works;
 - (f) describe the community consultation undertaken to develop the strategies in e) above; and
 - (g) include a complaints management system that would be implemented for the duration of the Project.

Operational Noise Limits

B16. The Applicant must ensure that noise generated by the Development does not exceed the noise limits in Table 2.

Table 2: Noise Limits dB(A)

Location	Day Evening		Night
	LAeq(15 minute)	LAeq(15 minute)	LAeq(15 minute)
All sensitive receivers	55	50	45

Note: Noise generated by the Development is to be measured in accordance with the relevant procedures and exemptions (including certain meteorological conditions) of the NSW Industrial Noise Policy.

Noise Mitigation

B17. The Applicant must ensure all noise attenuation measures already installed for the Existing Development are maintained in good working order for the life of the Development.

Operational Noise Management Plan

- B18. Within 6 months of the date of this consent, the Applicant must prepare an Operational Noise Management Plan (ONMP) for the Existing Development, to manage operational noise to the satisfaction of the Secretary. The ONMP must form part of the OEMP required by Condition C4 and be prepared in accordance with Condition C9. The ONMP must:
 - (a) be prepared by a suitably qualified and experienced noise expert;
 - (b) describe the measures that will be implemented to minimise noise from the Existing Development including:
 - (i) all reasonable and feasible measures being employed on site;
 - (ii) maintain equipment to ensure it is in good order;
 - (iii) traffic noise is effectively managed;
 - (iv) the noise impacts of the Existing Development are minimised during any meteorological conditions when the noise criteria in this consent do not apply;
 - (v) compliance with the relevant conditions of this consent;
 - (c) includes a noise monitoring program that:
 - (i) must be carried out until otherwise agreed to in writing by the Secretary;
 - (ii) is capable of evaluating the performance of the Existing Development; and
 - (iii) includes a protocol for determining exceedances of the relevant conditions of this consent and responding to complaints; and
 - (d) include a procedure for implementing noise mitigation measures, should the Applicant be directed by the EPA or the Secretary, or should non-compliances be detected.
- B19. Prior to the commencement of operation of the Project, the Applicant must update the ONMP required under Condition B18, to incorporate the Project and its management, to the satisfaction of the Secretary. The updated plan must be prepared in accordance with the requirements of Condition B18, and must incorporate the following:
 - (a) description of the noise monitoring program to measure the performance of the Development against this consent and the EPL; and
 - (b) description of any additional measures that would be implemented for the Development to ensure compliance with the noise limits in Condition B16 and the EPL.
 - (c) details of the noise attenuation measures for the gas turbine and ancillary equipment associated with the particleboard material handling area.

Noise Verification

- B20. Within 3 months of commencement of operation of the Project, the Applicant must undertake a noise verification study for the Development to the satisfaction of the Secretary. The study must:
 - (a) be undertaken by a suitably qualified expert;
 - (b) include an analysis of compliance with noise limits specified in Condition B16;
 - (c) demonstrate achievement of the sound power levels in Table 12 of the Borg Panels Timber Panel Processing Facility Noise and Vibration Impact Assessment, dated May 2016 and prepared by Global Acoustics;
 - (d) include an outline of management actions to be taken to address any exceedances of the limits specified in Condition B16; and
 - (e) describe the contingency measures in the event management actions are not effective in reducing noise levels to an acceptable level.

Within 1 month of completing the study, the Applicant must submit a report outlining the findings of the study to the Secretary and the EPA.

- B20A. Within three months of the commissioning of the gas turbines and ancillary equipment, the Applicant must undertake a noise verification study for the Development to the satisfaction of the Secretary. The study must:
 - (a) be undertaken by a suitably qualified expert; and
 - (b) include an analysis of compliance with noise limits specified in Condition B16;
 - (c) include an outline of management actions to be taken to address any exceedances of the limits specified in Condition B16; and
 - (d) describe the contingency measures in the event management actions are not effective in reducing noise levels to an acceptable level.

Borg will implement reasonable and practical measures to avoid or minimise impacts to the environment that may arise as a result of the project.

Borg will carry out the proposed works in accordance with the EIS, RTS and the approval conditions.

Noise

Attenuation, as detailed in the NIA, will be implemented as follows:

- Conti 1 Dryer Fan air intake redesigned and the fan speed reduced to minimise noise generated. A sound power
 reduction from LAeq 121 dB to 114 dB or better is required.
- Booster fan will receive additional insulation and a reduction in fan speed. A sound power reduction from LAeq 116 dB to 109 dB or better is required.
- Main fibre transport fan will have a concrete enclosure constructed around it. A sound power reduction from LAeq 110 dB to 104 dB or better is required.

In short, the approach taken by Borg to mitigate noise is based on a number of factors:

- Continuation of the use of mobile chippers (that is, not to enclose the mobile chippers). However, these are backup items (only to be used when enclosed, electric chippers are not operational), and will not be used in enhancing met conditions.
- Implementation of additional noise mitigation measures to minimise noise generated by equipment, as detailed above.
- 3. Provision of sound attenuation structures and enclosures to other equipment where appropriate.

Irrespective of the above, Borg undertakes to meet the existing plant sound power reductions specified in the NIA. If the proposed attenuation measures to the existing plant are found to be insufficient in achieving these reductions, additional works will be undertaken.

A.2 ENVIRONMENT PROTECTION LICENCE

L3 Noise limits

- L3.1 Noise from the premises must not exceed:
 - a) 55 dB(A) LAeq(15 minute) during the day (7am to 6pm); and
 - b) 50 dB(A) LAeq(15 minute) during the evening (6pm to 10pm); and
 - c) at all other times 45 dB(A) LAeq (15 minute), except as expressly provided by this licence.

Where LAeq means the equivalent continuous noise level - the level of noise equivalent to the energy-average of noise levels occurring over a measurement period.

- L3.2 To determine compliance with condition L3.1, noise must be measured at or computed for "Oorong" or any other noise sensitive location (such as a residence/school) along Herbourne or West Cunynghame Street, Oberon. A modifying factor correction must be applied for tonal, impulsive or intermittent noise in accordance with the "Environmental Noise Management - NSW Industrial Noise Policy" (January 2000).
- L3.3 The noise emission limits identified in this licence apply under all meteorological conditions except:
 - a) during rain and wind speeds (at 10m height) greater than 3m/s; and b) under "non-significant weather conditions".

Note: Field meteorological indicators for non-significant weather conditions are described in the NSW Industrial Noise Policy, Chapter 5 and Appendix E in relation to wind and temperature inversions.

A.3 OPERATIONAL NOISE MANAGEMENT PLAN

7.3 Attended Noise Monitoring

Attended noise monitoring is preferred to the use of noise loggers when determining compliance with prescribed limits as it allows the most accurate determination of the contribution, if any, to measured noise levels by the source of interest.

Operational noise impacts are potentially greatest at night when background levels are typically low and the allowable levels are correspondingly low, and, this is the period when noise propagation enhancement is most likely.

7.3.1 Compliance Monitoring

It is proposed to conduct compliance monitoring for the Existing Development at each location once per year during the day, evening and night periods (pending weather and operational constraints) with results compared to noise criteria in **Table 3**. Compliance monitoring should be conducted during the winter period as this season represents the likely worst-case season due to temperature inversions.

Any exceedance of a noise criterion recorded during regular attended noise monitoring is to be investigated. The acoustic consultant undertaking the attended monitoring is to contact the Environment Officer as soon as practicable to advise of the recorded results. If exceedance of limits is demonstrated follow-up monitoring is to be undertaken within one week of the exceedance. The regular monitoring frequency will be resumed if no further exceedances are measured.

Attended compliance monitoring is to be undertaken by a suitably qualified noise expert. Appropriate techniques should be applied to determine noise contributions from the Existing Development in isolation (in the absence of all extraneous noise sources). These techniques could include, but are not limited to:

- Pausing the sound level meter during extraneous noise events, for example, when a
 dog is barking or road traffic noise is clearly audible and affecting the measurements;
- Using frequency filtering techniques where certain frequencies of noise are excluded from the measurements; or
- Using other noise descriptors such as LA90 or LA50 to filter extraneous noise events.

The Existing Development should be fully operational at the time of monitoring.

Operational noise performance is reported as detailed in Section 9.

7.4 Monitoring Locations

Four representative locations have been chosen for monitoring as summarised in Table 6. Refer to Figure 2 for these locations.

Location ID	Monitoring Location
NM1	Oberon Caravan Park
NM2	Intersection Pine Street and Herborn Street
NM3	127 Hazelgrove Road
NM4	Intersection Tasman Street and Earl Street

Table 6 – Noise Monitoring Locations

Noise management levels for each monitoring location are provided in **Table 3**. Where these are exceeded from operational noise sources, the exceedance should be investigated (as discussed in **Section 9**) to determine the cause and any necessary mitigation.

7.5 Meteorological Conditions

Monitoring should be undertaken on days of light winds (<5 m/s) and no rain. Wind speed is to be monitored using a hand held wind speed monitor. Rain and too much wind will elevate the noise level. If there is no choice but to monitor in inclement weather, note the conditions.

Meteorological data is obtained from the Borg Panels weather station (EPA Identification Point 26). This data allows correlation of atmospheric parameters and measured noise levels. Atmospheric condition measurement at ground level is also undertaken during attended monitoring.

10 ONMP Review

In accordance with Development Consent SSD 7016 Condition C10, this ONMP will be reviewed and if necessary revised within 3 months of an:

- Approval of a modification;
- Submission of an incident report under Condition C13;
- Approval of an Annual Review under Condition C11; or
- Completion of an audit under Condition C15.

Revisions to the ONMP will be submitted to the Secretary DP&E for approval.

A.4 CONSTRUCTION NOISE MANAGEMENT PLAN

5 Construction Noise Management Levels

Construction activities will be undertaken simultaneously with regular operation of the existing site. Borg propose to generally restrict site noise emission from both construction and operational tasks combined to comply with operational noise criteria conditioned in Development Consent SSD 7016 and EPL 3035.

Following consideration of the ICNG (Section 2.6), Development Consent (SSD 7016) conditions (Section 2.2), EPL 3035 (Section 2.4) and the measured background noise levels (refer Global Acoustics, May 2016), Table 6 summarises the Noise Management Levels (NMLs) for all residential receivers.

Location	Activity	Day	Evening	Night
		(7am-6pm)	(6pm-10pm)	(10pm-7am)
		LAeq (15 min)	LAeq (15 min)	LAeq (15 min)
All residential receivers	General Construction	55	50	45
receivers	Rock/ Concrete Breaking	75		

Table 6 – Operation and Construction Noise Management Levels

Work outside approved construction hours are not expected, however unforeseen constraints relating to delivery of materials or equipment, or other technical requirements, may see some activities undertaken outside approved hours. Where required, out of hours works will be undertaken to meet the noise management levels in **Table 6**.

Development Consent SSD 7016 Condition B14 requires non-standard construction hour work to be inaudible at the nearest sensitive receivers. The Development Consent takes precedence over the ICNG and will be adopted in this plan.

In this instance, "inaudible" means the activity is not discernible from general operation activities.

7.2 Monitoring Frequency

7.2.1 Compliance Monitoring

The following compliance monitoring, to be undertaken during construction by a suitably qualified noise expert, is recommended for the project:

- Periodic attended noise monitoring at the potentially most affected residences during the day period, with a frequency of once per quarter, during the construction phase of the Project; and
- If exceedance of limits is demonstrated, additional mitigation controls are to be implemented, and follow-up monitoring undertaken within one week of the exceedance.

Construction noise performance is reported as detailed in Section 10.

7.3 Monitoring Locations

Four representative locations have been chosen for monitoring as summarised in **Table 8**. Refer to **Figure 2** for these locations.

Location ID	Monitoring Location	
NM1	Oberon Caravan Park	
NM2	Intersection Pine Street and Herborn Street	
NM3	127 Hazelgrove Road	
NM4	Intersection Tasman Street and Earl Street	

Table 8 – Noise Monitoring Locations

Noise management levels for each monitoring location are provided in **Table 6**. Where these are exceeded by construction-related noise sources, the exceedance should be investigated (as discussed in **Section 10**) to determine the cause and any necessary mitigation.

7.3.2 Weather Conditions

Monitoring should be undertaken on days of light winds (<5 m/s) and no rain. Wind speed is to be monitored using a hand held wind speed monitor. Rain and too much wind will elevate the noise level. If there is no choice but to monitor in inclement weather, note the conditions on the field sheet.

NMLs listed in Table 6 apply under all meteorological conditions except for the following:

- · Wind speeds greater than 3 metres/second at 10 metres above ground level; or
- Stability category F temperature inversion conditions and wind speeds greater than 2 metres/second at 10 metres above ground level; or
- Stability category G temperature inversion conditions.

Weather conditions measured at the site weather station should be used to determine applicability of meteorological exclusion rules.

APPENDIX

B CALIBRATION CERTIFICATES

6	Acoustic Research Labs ry La	Pent	l 7 Building 2 423 Pe aant Hills NSW AU 61 2 9484 0800 A.B.N w.acousticresear	STRALIA 21	20
			vel Meter 2-3.2013		
	Calibra	tion	Certificate		
	Calibration Numl	er Cl	9073		
	Client Deta	12/	bal Acoustics Pty Ltd 16 Huntingdale Drive ornton NSW 2322		
	ment Tested/ Model Numbe Instrument Serial Numbe Microphone Serial Numbe Pre-amplifier Serial Numbe	r: 301 r: 047	31882 39		
Ambient Ten Relative	mospheric Conditions aperature : 24.5°C Humidity : 54.5% Pressure : 99.30kPa		Relativ	spheric Condit emperature : e Humidity : ric Pressure :	23.6°C 51%
	ician : Charlie Neil Date : 5 Feb 2019		Secondary Check: Report Issue Date :	Lewis Boorn	
Clause and Charact	Approved Signator	$:\mathcal{H}$	10		Ken William
15: Electrical Sig. tests 14: Frequency and time 15: Long Term Stabilit 16: Level linearity on t	y he reference level range hmitted for testing has successfully o	Result Pass Pass Pass Pass Pass Pass Pass Pas	Clause and Characte 17: Level linearity incl. d 18: Toneburst response 19: C Weighted Peak Sor 20: Overload Indication 21: High Level Stability be class 1 periodic tests of IEC tests were performed.	te level range cos md Level	Pass Pass Pass Pass
harden strength and strength and the	available, from an independent testi with EC 61672-2:2013, to demoni 13; the sound level meter submitted	TIMO LINE UN	model of plant land include to	The department of the state	the state of the set of the
Acoustic Tests	Learn Une		Measurement -		
II.3 Hz to 8kHz 12.5kHz 16kHz Electrical Tests 31.5 Hz to 20 kHz	+0.15dB +0.2dB =0.2430 +0.11dB		Relative Humility Barcometric Pressure	=0.2°C =2.4% =0.015kPa	
	All uncertainties are derived at th	e 95% comp	ldence level with a coverage fa	ctur of 2.	
	This calibration certificate is to be	read in co	junction with the calibration is	nogn te	
NATA	Acoustic Research Labs Pty Ltd in Accordited for compliance with B	NATA A	credited Laboratory Number 1		
	The results of the tests, calibration Australian/hational standards	ts and/or m	insummits included in this do		
ACCRETITATION				mutual recognition	

Global Acoustics Pty Ltd | PO Box 3115 | Thornton NSW 2322 Telephone +61 2 4966 4333 | Email global@globalacoustics.com.au ABN 94 094 985 734

6))) Research	Unit 36/14 Loyalty Rd North Rocks NSW AUSTF Ph: +61294840800 A.B.N.	RALIA 2151 65 160 399 119
V	Labs Pty Ltd	www.acousticresearc	ch.com.au
		d Calibrator	
	Calibrat	ion Certificate	
	Calibration Number	r C20155	
	Client Detail	s Global Acoustics Pty Ltd 12/16 Huntingdale Dr Thornton NSW 2322	
Equip	ment Tested/ Model Number Instrument Serial Number		
		pheric Conditions	
	Ambient Temperature Relative Humidity		
	Barometric Pressure		
Calibration Tech Calibration		Secondary Check: Report Issue Date :	Alannah Squires 12 Mar 2020
	Approved Signatory	Bil	Ken Williams
Characteristic Tes Generated Sound Pre		Result Pass	
Frequency Generated Total Distortion		Pass Pass	
	Nominal Level Nomina 94	I Frequency Measured Le 1000 94.13	vel Measured Frequency 1000.37
	re level(s) and frequency(ies) stated, for	requirements for periodic testing, describ or the environmental conditions under wh stainties of Measurement -	
Specific Tests Generated SPL	10.14dB	Environmental Conditions	40.2℃
Frequency	±0.09%	Relative Humidity	*2.4%
Distortion	±0.09%	Barometric Pressure 95% confidence level with a coverage fa	±0.015kPa
	All uncertainties are derived of the	yyy conjuctice terter with a concruge ju	clor by £.
	The tests <1000 kHz are not covered b	19 Acoustic Research Labs Pty Ltd NAT/	A accreditation.
•		ense engene en enge	
	This calibration certificate is to be	read in conjunction with the calibration to	est report.
~		NATA Accredited Laboratory Number 1	
NATA	Acoustic Research Labs Pty Ltd is Accredited for compliance with IS0	NATA Accredited Laboratory Number 1	4172
~	Acoustic Research Labs Pty Ltd is Accredited for compliance with 150 The results of the tests, calibration units NATA is a signatory to the ILAC 9	NATA Accredited Laboratory Number I O/IEC 17025 - calibration. s and/or measurements included in this de Mutual Recognition Arrangement for the t	4172. scument are traceable to SI
NATA	Acoustic Research Labs Pty Ltd is Accredited for compliance with 150 The results of the tests, calibration units NATA is a signatory to the ILAC 9	NATA Accredited Laboratory Number 1 O/IEC 17025 - calibration. s and/or measurements included in this de	4172. scument are traceable to SI

Appendix F – Construction Noise Monitoring Reports

Borg Panels Facility

Environmental Noise Monitoring Quarter 2 and Annual 2020

Prepared for Borg Manufacturing Pty Ltd

Noise and Vibration Analysis and Solutions

Global Acoustics Pty Ltd PO Box 3115 | Thornton NSW 2322 Telephone +61 2 4966 4333 Email global@globalacoustics.com.au ABN 94 094 985 734

Borg Panels Facility

Environmental Noise Monitoring Quarter 2 and Annual 2020

Reference: 20153_R01 Report date: 19 August 2020

Prepared for

Borg Manufacturing Pty Ltd 124 Lowes Mount Road Oberon 2787 NSW

Prepared by

Global Acoustics Pty Ltd PO Box 3115 Thornton NSW 2322

Line

Reff Une.

Prepared:

Tambalyn Durney Consultant

QA Review: Robert Kirwan Consultant

Global Acoustics Pty Ltd ~ Environmental noise modelling and impact assessment ~ Sound power testing ~ Noise control advice ~ Noise and vibration monitoring ~ OHS noise monitoring and advice ~ Expert evidence in Land and Environment and Compensation Courts ~ Architectural acoustics ~ Blasting assessments and monitoring ~ Noise management plans (NMP) ~ Sound level meter and noise logger sales and hire

Table of Contents

1 INTRODUCTION	1
1.1 Background	1
1.2 Monitoring Locations	1
1.3 Terminology & Abbreviations	
2 REGULATOR REQUIREMENTS AND NOISE CRITERIA	4
2.1 Development Consent	4
2.2 Environment Protection Licence	4
2.3 Noise Management Plan	4
2.4 Noise Criteria	4
2.5 Meteorological Conditions	5
2.6 Modifying Factors	5
3 METHODOLOGY	6
3.1 Overview	6
3.2 Attended Noise Monitoring	6
3.3 Modifying Factors	7
3.4 Monitoring Equipment	7
4 RESULTS	
4.1 Total Measured Noise Levels	
4.2 Modifying Factors	8
4.3 Attended Noise Monitoring	9
4.4 Atmospheric Conditions	
5 SUMMARY	

Appendices

A	REGULATOR DOCUMENTS	.12
B	CALIBRATION CERTIFICATES	.23

1 INTRODUCTION

1.1 Background

Global Acoustics was engaged by Borg Manufacturing Pty Ltd to conduct a noise survey of operations and construction at the Borg panel manufacturing facility (Borg) near Oberon, NSW. The purpose of the survey was to quantify and describe the acoustic environment around the site and compare results with specified limits.

Attended environmental noise monitoring described in this report was undertaken during the day, evening, and night periods of 24 June 2020 at four monitoring locations around Borg.

1.2 Monitoring Locations

Monitoring locations are detailed in Table 1.1 and shown in Figure 1. It should be noted that Figure 1 shows the actual monitoring position, not the location of residences.

Report Descriptor	Monitoring Location	
NM1	Oberon Caravan Park	
NM2	Intersection of Pine Street and Herborn Street	
NM3	127 Hazelgrove Road	
NM4	Intersection of Tasman Street and Earl Street	

Table 1.1: ATTENDED MONITORING LOCATIONS

Figure 1: Attended Noise Monitoring Locations

Global Acoustics Pty Ltd | PO Box 3115 | Thornton NSW 2322 Telephone +61 2 4966 4333 | Email global@globalacoustics.com.au ABN 94 094 985 734

1.3 Terminology & Abbreviations

Some definitions of terms and abbreviations which may be used in this report are provided in Table 1.2.

Table 1.2: TERMINOLOGY & ABBREVIATIONS

Descriptor	Definition	
dB(A)	Noise level measurement units are decibels (dB). The "A" weighting scale is used to describe human response to noise.	
L _{Amax}	The maximum A-weighted noise level over a time period.	
L _{A1}	The noise level which is exceeded for 1 per cent of the time.	
LA1,1minute	The noise level which is exceeded for 1 per cent of the specified time period of 1 minute.	
LA10	The noise level which is exceeded for 10 percent of the time.	
L _{Aeq}	The average noise A-weighted energy during a measurement period.	
L _{A50}	The noise level which is exceeded for 50 per cent of the time and the median noise level during a measurement period.	
L _{A90}	The level exceeded for 90 percent of the time. The L_{A90} level is often referred to as the "background" noise level and is commonly used to determine noise criteria for assessment purposes.	
L _{Amin}	The minimum A-weighted noise level over a time period.	
L _{Ceq}	The average C-weighted noise energy during a measurement period. The "C" weighting scale is used to take into account low-frequency components of noise within the audibility range of humans.	
SPL	Sound pressure level. Fluctuations in pressure measured as 10 times a logarithmic scale, with the reference pressure being 20 micropascals.	
Hertz (Hz)	The frequency of fluctuations in pressure, measured in cycles per second. Most sounds are a combination of many frequencies together.	
AWS	Automatic weather station used to collect meteorological data, typically at an altitude of 10 metres	
VTG	Vertical temperature gradient in degrees Celsius per 100 metres altitude.	
Sigma-theta	The standard deviation of the horizontal wind direction over a period of time.	
SC	Stability class (or category) is determined from measured wind speed and either sigma-theta or VTG.	
IA	Inaudible. When site noise is noted as IA then there was no site noise at the monitoring location.	
NM	Not Measurable. If site noise is noted as NM, this means some noise was audible but could not be quantified.	
Day	This is the period 7:00am to 6:00pm.	
Evening	This is the period 6:00pm to 10:00pm.	
Night	This is the period 10:00pm to 7:00am.	

2 REGULATOR REQUIREMENTS AND NOISE CRITERIA

2.1 Development Consent

The most current development consent associated with activities at Borg is Development Consent SSD 7016 (the consent), most recently modified 29 November 2019 (MOD 2). The sections of the consent relating to noise are reproduced in Appendix A.

2.2 Environment Protection Licence

Borg holds Environment Protection Licence (EPL) No. 3035 issued by the Environment Protection Authority (EPA) most recently on 4 September 2019. Relevant sections of the EPL are reproduced in Appendix A.

2.3 Noise Management Plan

Noise monitoring requirements are detailed in the Borg Operational Noise Management Plan (ONMP) and Construction Noise Management Plan (CNMP). The most recent version of the ONMP was approved in December 2017. The most recent version of the CNMP was approved in June 2017. Relevant sections of the ONMP and CNMP are reproduced in Appendix A.

2.4 Noise Criteria

Noise limits are consistent between the consent and EPL and have been reproduced in Table 2.1 below.

Table 2.1: IMPACT ASSESSMENT CRITERIA

Location	Day L _{Aeq} ,15minute dB	Evening L _{Aeq} ,15minute dB	Night L _{Aeq,} 15minute dB
All sensitive receivers	55	50	45

Construction noise criteria for each monitoring location are detailed in Table 2.2 and Table 2.3.

Report Descriptor	Day L _{Aeq,15minute} dB	Evening L _{Aeq,15minute} dB	Night LAeq,15minute dB
NM1	55	50	45
NM2	55	50	45
NM3	55	50	45
NM4	55	50	45

Table 2.2: GENERAL CONSTRUCTION NOISE LIMITS

Table 2.3: ROCK/CONCRETE BREAKING NOISE LIMITS

Report Descriptor	Day L _{Aeq,15minute} dB
NM1	75
NM2	75
NM3	75
NM4	75

2.5 Meteorological Conditions

As described in the consent, noise generated by Borg is to be measured in accordance with the relevant procedures and exemptions (including certain meteorological conditions) of the NSW Industrial Noise Policy (INP), as follows:

- during rain and wind speeds greater than 3 metres/second at 10 metres above ground level; or
- stability category F temperature inversion conditions and wind speeds greater than 2 metres/second at 10 metres above ground level; or
- stability category G temperature inversion conditions.

2.6 Modifying Factors

The EPA 'Noise Policy for Industry' (NPfI, 2017) was approved for use in NSW in October 2017. For assessment of modifying factors, the NPfI immediately superseded the 'Industrial Noise Policy' (INP, 2000), as outlined in the EPA document 'Implementation and transitional arrangements for the Noise Policy for Industry' (2017). Assessment and reporting of modifying factors has been undertaken in accordance with Fact Sheet C of the NPfI.

3 METHODOLOGY

3.1 Overview

Attended environmental noise monitoring was conducted in general accordance with Australian Standard AS1055 'Acoustics, Description and Measurement of Environmental Noise', relevant NSW EPA requirements, and the Borg ONMP and CNMP. Meteorological data was obtained from the Borg automatic weather station (AWS) which allowed correlation of atmospheric parameters with measured noise levels.

3.2 Attended Noise Monitoring

During this survey, attended monitoring was undertaken during the day, evening and night period at each location. The duration of each measurement was 15 minutes. Atmospheric condition measurement was also undertaken at each monitoring location.

This survey presents noise levels gathered during attended monitoring that are the result of many sounds reaching the sound level meter microphone during monitoring. Received levels from various noise sources were noted during attended monitoring and particular attention was paid to the extent of Borg's contribution, if any, to measured levels. At each receptor location, Borg's L_{Aeq,15minute} and L_{A1,1minute} (in the absence of any other noise) was measured directly, where possible, or, determined by frequency analysis.

If the exact contribution of the source of interest (in this case Borg) cannot be established, due to masking by other noise sources in a similar frequency range, but site noise levels are observed to be well below (more than 5 dB lower than) any relevant criterion, a maximum estimate of the potential contribution of the site might be made based on other measured site-only noise descriptors in accordance with Section 7.1 of the NPfI. This is generally expressed as a 'less than' quantity, such as <20 dB or <30 dB.

The terms 'Inaudible' (IA) or 'Not Measurable' (NM) may also be used in this report. When site noise is noted as IA, no site noise was audible at the monitoring location. When site noise is noted as NM, this means some noise was audible but could not be quantified. If site noise was NM due to masking but estimated to be significant in relation to a relevant criterion, we would employ methods (e.g. measure closer and back calculate) to determine a value for reporting.

All sites noted as NM in this report are due to one or more of the following reasons:

- Site noise levels were extremely low and unlikely, in many cases, to be even noticed;
- Site noise levels were masked by another relatively loud noise source that is characteristic of the environment (e.g. breeze in foliage or continuous road traffic noise) that cannot be eliminated by moving closer; and/or
- It was not feasible, nor reasonable to employ methods such as move closer and back calculate. Cases

may include, but are not limited to, rough terrain preventing closer measurement, addition/removal of significant source to receiver shielding caused by moving closer, and meteorological conditions where back calculation may not be accurate.

A measurement of $L_{A1,1minute}$ corresponds to the highest noise level generated for 0.6 second during one minute. In practical terms this is the highest noise level, or L_{Amax} , received from the site during the entire measurement period (i.e. the highest level of the worst minute during the 15 minute measurement).

Often extraneous noise events (for example, road traffic pass-bys and dogs) interfere with the measurement of site noise levels in the frequency range of interest. Where required, the sound level meter is paused during these occurrences to aid in quantification of the site only $L_{Aeq,15minute}$ level.

3.3 Modifying Factors

All measurements were evaluated for potential modifying factors in accordance with the NPfI. Specific methodology for assessment of each modifying factor is outlined in Fact Sheet C of the NPfI.

Assessment of modifying factors is undertaken at the time of measurement if the site was audible and directly quantifiable, such that the site-only L_{Aeq} was not "NM" or less than a maximum cut off value (e.g. "<20 dB" or "<30 dB").

If applicable, modifying factors have been reported and added to measured site-only L_{Aeq} noise levels when meteorological conditions satisfied requirements for site noise criteria to be applicable. Low-frequency modifying factors have only been applied to site-only L_{Aeq} levels if Borg was the only contributing lowfrequency noise source.

3.4 Monitoring Equipment

Table 3.1 lists the equipment used to measure environmental noise levels. Calibration certificates are provided in Appendix B.

Table 3.1: ATTENDED NOISE MONITORING EQUIPMENT

Model	Serial Number	Calibration Due Date
Rion NA-28 sound level analyser	30131882	05/02/2021
Pulsar 105 acoustic calibrator	78226	11/03/2022

4 RESULTS

4.1 Total Measured Noise Levels

Overall noise levels measured at each location during attended measurements are provided in Table 4.1.

Location	Start Date and Time	L _{Amax} dB	L _{A1} dB	L _{A10} dB	L _{Aeq} dB	L _{A50} dB	L _{A90} dB	L _{Amin} dB	L _{Ceq} dB
NM1	24/06/2020 15:02	79	61	52	52	47	45	42	65
NM1	24/06/2020 20:28	57	48	44	43	42	41	40	59
NM1	24/06/2020 22:49	57	47	45	44	43	42	39	59
NM2	24/06/2020 15:27	66	60	51	49	46	43	39	62
NM2	24/06/2020 20:49	54	47	41	39	38	36	33	59
NM2	24/06/2020 23:14	50	43	41	39	38	37	34	58
NM3	24/06/2020 16:14	72	61	48	49	43	41	38	61
NM3	24/06/2020 19:45	53	42	40	38	38	36	34	53
NM3	24/06/2020 22:01	55	49	45	42	41	38	36	55
NM4	24/06/2020 14:38	68	58	45	46	40	38	36	58
NM4	24/06/2020 20:07	48	43	36	34	32	30	28	51
NM4	24/06/2020 22:25	48	41	36	34	32	31	29	52

Table 4.1: MEASURED NOISE LEVELS – QUARTER 2 AND ANNUAL 2020¹

Notes:

1. Levels in this table are not necessarily the result of activity at Borg.

4.2 Modifying Factors

Modifying factors, as defined in the NPfI, were not applicable during the time of monitoring.

4.3 Attended Noise Monitoring

Table 4.2 compares measured LAeq,15minute levels from Borg with the project specific noise criteria.

Location	Start Date and Time	Wind Speed m/s	Stability Class	Criterion dB	Criterion Applies? ¹	Borg L _{Aeq,15min} dB ²	Exceedance ^{3,4}
NM1	24/06/2020 15:02	3.6	D	55	No	46	NA
NM1	24/06/2020 20:28	2.2	E	50	Yes	42	Nil
NM1	24/06/2020 22:49	2.9	D	45	Yes	43	Nil
NM2	24/06/2020 15:27	3.0	D	55	Yes	46	Nil
NM2	24/06/2020 20:49	2.2	Е	50	Yes	38	Nil
NM2	24/06/2020 23:14	2.6	D	45	Yes	<30	Nil
NM3	24/06/2020 16:14	5.1	D	55	No	42	NA
NM3	24/06/2020 19:45	2.7	D	50	Yes	37	Nil
NM3	24/06/2020 22:01	3.2	D	45	No	39	NA
NM4	24/06/2020 14:38	3.0	С	55	Yes	38	Nil
NM4	24/06/2020 20:07	2.7	D	50	Yes	31	Nil
NM4	24/06/2020 22:25	2.8	Е	45	Yes	32	Nil

Table 4.2: LAea.15minute GENERATED BY BORG AGAINST CRITERIA – QUARTER 2 AND ANNUAL 2020

Notes:

1. Noise criteria apply under all meteorological conditions except the following:

- Wind speeds greater than 3 m/s at 10 metres above ground level; or

- Stability class F temperature inversion conditions, and wind speeds greater than 2 m/s at 10 metres above ground level; or - Stability class G temperature inversion conditions.

2. Site-only LAeq,15minute attributed to Borg, including modifying factors if applicable;

3. Bold results in red indicate exceedance of criterion (if applicable); and

4. NA in exceedance column means atmospheric conditions outside conditions specified, therefore criterion was not applicable.

4.4 Atmospheric Conditions

Atmospheric condition data measured by the operator during each measurement using a Kestrel hand-held weather meter is shown in Table 4.3. The wind speed, direction and temperature were measured at approximately 1.8 metres. Attended noise monitoring is not undertaken during rain, hail, or wind speeds above 5 m/s at microphone height.

Location	Start Date and Time	Temperature ° C	Wind Speed m/s	Wind Direction ° Magnetic North ¹	Cloud Cover 1/8s
NM1	24/06/2020 15:02	7	0.7	220	8
NM1	24/06/2020 20:28	5	0.9	180	8
NM1	24/06/2020 22:49	5	0.0	-	8
NM2	24/06/2020 15:27	7	0.7	170	8
NM2	24/06/2020 20:49	5	1.4	190	8
NM2	24/06/2020 23:14	5	1.0	260	8
NM3	24/06/2020 16:14	5	2.1	190	8
NM3	24/06/2020 19:45	5	0.7	190	8
NM3	24/06/2020 22:01	5	0.6	245	8
NM4	24/06/2020 14:38	7	0.7	190	8
NM4	24/06/2020 20:07	5	0.4	280	0
NM4	24/06/2020 22:25	6	0.0	-	8

Table 4.3: MEASURED ATMOSPHERIC CONDITIONS – QUARTER 2 AND ANNUAL 2020

Notes:

1. "-" indicates calm conditions at monitoring location.

Meteorological data used for compliance assessment is sourced from the Borg AWS.

5 SUMMARY

Global Acoustics was engaged by Borg Manufacturing Pty Ltd to conduct a noise survey of operations at the Borg panel manufacturing facility (Borg) near Oberon, NSW. The purpose of the survey was to quantify and describe the acoustic environment around the site and compare results with specified limits.

Attended environmental noise monitoring described in this report was undertaken during the day, evening, and night periods of 24 June 2020 at four monitoring locations around Borg.

Borg operations complied with the relevant criteria during the Quarter 2 and Annual 2020 survey at all monitoring locations.

Criteria may not always be applicable due to meteorological conditions at the time of monitoring.

Global Acoustics Pty Ltd

APPENDIX

A **REGULATOR DOCUMENTS**

A.1 DEVELOPMENT CONSENT SSD 7016

NOISE

Hours of Work

B13. The Applicant must comply with the hours detailed in **Table 1**, unless otherwise agreed in writing by the-Secretary.

Table 1: Hours of Work

Activity	Day	Time
Earthworks and Construction	Monday – Friday Saturday	7 am to 7 pm 8 am to 1 pm
Operation	Monday – Sunday	24 hours

- B14. Works outside of the hours identified in Condition B13 may be undertaken in the following circumstances:
 - (a) works that are inaudible at the nearest sensitive receivers;
 - (b) works agreed to in writing by the Secretary;
 - (c) for the delivery of materials required outside these hours by the NSW Police Force or other authorities for safety reasons; or
 - (d) where it is required in an emergency to avoid the loss of lives, property and/or to prevent environmental harm.

Construction Noise Management Plan

- B15. The Applicant must prepare a Construction Noise Management Plan (CNMP) for the Project to manage construction noise. The plan must form part of the CEMP required by Condition C1 and must:
 - (a) be prepared by a suitably qualified and experienced noise expert;
 - (b) be approved by the Secretary prior to the commencement of construction of the Project;
 - (c) describe procedures for achieving the noise limits in Table 2;
 - (d) describe the measures to be implemented to manage noisy works such as rock/concrete breaking activities, in close proximity to sensitive receivers;
 - (e) include strategies that have been developed with the community for managing noisy works;
 - (f) describe the community consultation undertaken to develop the strategies in e) above; and
 - (g) include a complaints management system that would be implemented for the duration of the Project.

Operational Noise Limits

B16. The Applicant must ensure that noise generated by the Development does not exceed the noise limits in Table 2.

Table 2: Noise Limits dB(A)

Location	Day	Evening	Night
	LAeq(15 minute)	LAeq(15 minute)	LAeq(15 minute)
All sensitive receivers	55	50	45

Note: Noise generated by the Development is to be measured in accordance with the relevant procedures and exemptions (including certain meteorological conditions) of the NSW Industrial Noise Policy.

Noise Mitigation

B17. The Applicant must ensure all noise attenuation measures already installed for the Existing Development are maintained in good working order for the life of the Development.

Operational Noise Management Plan

- B18. Within 6 months of the date of this consent, the Applicant must prepare an Operational Noise Management Plan (ONMP) for the Existing Development, to manage operational noise to the satisfaction of the Secretary. The ONMP must form part of the OEMP required by Condition C4 and be prepared in accordance with Condition C9. The ONMP must:
 - (a) be prepared by a suitably qualified and experienced noise expert;
 - (b) describe the measures that will be implemented to minimise noise from the Existing Development including:
 - (i) all reasonable and feasible measures being employed on site;
 - (ii) maintain equipment to ensure it is in good order;
 - (iii) traffic noise is effectively managed;
 - (iv) the noise impacts of the Existing Development are minimised during any meteorological conditions when the noise criteria in this consent do not apply;
 - (v) compliance with the relevant conditions of this consent;
 - (c) includes a noise monitoring program that:
 - (i) must be carried out until otherwise agreed to in writing by the Secretary;
 - (ii) is capable of evaluating the performance of the Existing Development; and
 - (iii) includes a protocol for determining exceedances of the relevant conditions of this consent and responding to complaints; and
 - (d) include a procedure for implementing noise mitigation measures, should the Applicant be directed by the EPA or the Secretary, or should non-compliances be detected.
- B19. Prior to the commencement of operation of the Project, the Applicant must update the ONMP required under Condition B18, to incorporate the Project and its management, to the satisfaction of the Secretary. The updated plan must be prepared in accordance with the requirements of Condition B18, and must incorporate the following:
 - (a) description of the noise monitoring program to measure the performance of the Development against this consent and the EPL; and
 - (b) description of any additional measures that would be implemented for the Development to ensure compliance with the noise limits in Condition B16 and the EPL.
 - (c) details of the noise attenuation measures for the gas turbine and ancillary equipment associated with the particleboard material handling area.

Noise Verification

- B20. Within 3 months of commencement of operation of the Project, the Applicant must undertake a noise verification study for the Development to the satisfaction of the Secretary. The study must:
 - (a) be undertaken by a suitably qualified expert;
 - (b) include an analysis of compliance with noise limits specified in Condition B16;
 - (c) demonstrate achievement of the sound power levels in Table 12 of the Borg Panels Timber Panel Processing Facility Noise and Vibration Impact Assessment, dated May 2016 and prepared by Global Acoustics;
 - (d) include an outline of management actions to be taken to address any exceedances of the limits specified in Condition B16; and
 - (e) describe the contingency measures in the event management actions are not effective in reducing noise levels to an acceptable level.

Within 1 month of completing the study, the Applicant must submit a report outlining the findings of the study to the Secretary and the EPA.

- B20A. Within three months of the commissioning of the gas turbines and ancillary equipment, the Applicant must undertake a noise verification study for the Development to the satisfaction of the Secretary. The study must:
 - (a) be undertaken by a suitably qualified expert; and
 - (b) include an analysis of compliance with noise limits specified in Condition B16;
 - (c) include an outline of management actions to be taken to address any exceedances of the limits specified in Condition B16; and
 - (d) describe the contingency measures in the event management actions are not effective in reducing noise levels to an acceptable level.

Borg will implement reasonable and practical measures to avoid or minimise impacts to the environment that may arise as a result of the project.

Borg will carry out the proposed works in accordance with the EIS, RTS and the approval conditions.

Noise

Attenuation, as detailed in the NIA, will be implemented as follows:

- Conti 1 Dryer Fan air intake redesigned and the fan speed reduced to minimise noise generated. A sound power
 reduction from LAeq 121 dB to 114 dB or better is required.
- Booster fan will receive additional insulation and a reduction in fan speed. A sound power reduction from LAeq 116 dB to 109 dB or better is required.
- Main fibre transport fan will have a concrete enclosure constructed around it. A sound power reduction from LAeq 110 dB to 104 dB or better is required.

In short, the approach taken by Borg to mitigate noise is based on a number of factors:

- Continuation of the use of mobile chippers (that is, not to enclose the mobile chippers). However, these are backup items (only to be used when enclosed, electric chippers are not operational), and will not be used in enhancing met conditions.
- Implementation of additional noise mitigation measures to minimise noise generated by equipment, as detailed above.
- 3. Provision of sound attenuation structures and enclosures to other equipment where appropriate.

Irrespective of the above, Borg undertakes to meet the existing plant sound power reductions specified in the NIA. If the proposed attenuation measures to the existing plant are found to be insufficient in achieving these reductions, additional works will be undertaken.

A.2 ENVIRONMENT PROTECTION LICENCE

L3 Noise limits

- L3.1 Noise from the premises must not exceed:
 - a) 55 dB(A) LAeq(15 minute) during the day (7am to 6pm); and
 - b) 50 dB(A) LAeq(15 minute) during the evening (6pm to 10pm); and
 - c) at all other times 45 dB(A) LAeq (15 minute), except as expressly provided by this licence.

Where LAeq means the equivalent continuous noise level - the level of noise equivalent to the energy-average of noise levels occurring over a measurement period.

- L3.2 To determine compliance with condition L3.1, noise must be measured at or computed for "Oorong" or any other noise sensitive location (such as a residence/school) along Herbourne or West Cunynghame Street, Oberon. A modifying factor correction must be applied for tonal, impulsive or intermittent noise in accordance with the "Environmental Noise Management - NSW Industrial Noise Policy" (January 2000).
- L3.3 The noise emission limits identified in this licence apply under all meteorological conditions except:
 - a) during rain and wind speeds (at 10m height) greater than 3m/s; and b) under "non-significant weather conditions".

Note: Field meteorological indicators for non-significant weather conditions are described in the NSW Industrial Noise Policy, Chapter 5 and Appendix E in relation to wind and temperature inversions.

A.3 OPERATIONAL NOISE MANAGEMENT PLAN

7.3 Attended Noise Monitoring

Attended noise monitoring is preferred to the use of noise loggers when determining compliance with prescribed limits as it allows the most accurate determination of the contribution, if any, to measured noise levels by the source of interest.

Operational noise impacts are potentially greatest at night when background levels are typically low and the allowable levels are correspondingly low, and, this is the period when noise propagation enhancement is most likely.

7.3.1 Compliance Monitoring

It is proposed to conduct compliance monitoring for the Existing Development at each location once per year during the day, evening and night periods (pending weather and operational constraints) with results compared to noise criteria in **Table 3**. Compliance monitoring should be conducted during the winter period as this season represents the likely worst-case season due to temperature inversions.

Any exceedance of a noise criterion recorded during regular attended noise monitoring is to be investigated. The acoustic consultant undertaking the attended monitoring is to contact the Environment Officer as soon as practicable to advise of the recorded results. If exceedance of limits is demonstrated follow-up monitoring is to be undertaken within one week of the exceedance. The regular monitoring frequency will be resumed if no further exceedances are measured.

Attended compliance monitoring is to be undertaken by a suitably qualified noise expert. Appropriate techniques should be applied to determine noise contributions from the Existing Development in isolation (in the absence of all extraneous noise sources). These techniques could include, but are not limited to:

- Pausing the sound level meter during extraneous noise events, for example, when a
 dog is barking or road traffic noise is clearly audible and affecting the measurements;
- Using frequency filtering techniques where certain frequencies of noise are excluded from the measurements; or
- Using other noise descriptors such as LA90 or LA50 to filter extraneous noise events.

The Existing Development should be fully operational at the time of monitoring.

Operational noise performance is reported as detailed in Section 9.

7.4 Monitoring Locations

Four representative locations have been chosen for monitoring as summarised in Table 6. Refer to Figure 2 for these locations.

Location ID	Monitoring Location
NM1	Oberon Caravan Park
NM2	Intersection Pine Street and Herborn Street
NM3	127 Hazelgrove Road
NM4	Intersection Tasman Street and Earl Street

Table 6 – Noise Monitoring Locations

Noise management levels for each monitoring location are provided in **Table 3**. Where these are exceeded from operational noise sources, the exceedance should be investigated (as discussed in **Section 9**) to determine the cause and any necessary mitigation.

7.5 Meteorological Conditions

Monitoring should be undertaken on days of light winds (<5 m/s) and no rain. Wind speed is to be monitored using a hand held wind speed monitor. Rain and too much wind will elevate the noise level. If there is no choice but to monitor in inclement weather, note the conditions.

Meteorological data is obtained from the Borg Panels weather station (EPA Identification Point 26). This data allows correlation of atmospheric parameters and measured noise levels. Atmospheric condition measurement at ground level is also undertaken during attended monitoring.

10 ONMP Review

In accordance with Development Consent SSD 7016 Condition C10, this ONMP will be reviewed and if necessary revised within 3 months of an:

- Approval of a modification;
- Submission of an incident report under Condition C13;
- Approval of an Annual Review under Condition C11; or
- Completion of an audit under Condition C15.

Revisions to the ONMP will be submitted to the Secretary DP&E for approval.

A.4 CONSTRUCTION NOISE MANAGEMENT PLAN

5 Construction Noise Management Levels

Construction activities will be undertaken simultaneously with regular operation of the existing site. Borg propose to generally restrict site noise emission from both construction and operational tasks combined to comply with operational noise criteria conditioned in Development Consent SSD 7016 and EPL 3035.

Following consideration of the ICNG (Section 2.6), Development Consent (SSD 7016) conditions (Section 2.2), EPL 3035 (Section 2.4) and the measured background noise levels (refer Global Acoustics, May 2016), Table 6 summarises the Noise Management Levels (NMLs) for all residential receivers.

Location	Activity	Day	Evening	Night
		(7am-6pm)	(6pm-10pm)	(10pm-7am)
		LAeq (15 min)	LAeq (15 min)	LAeq (15 min)
All residential receivers	General Construction	55	50	45
	Rock/ Concrete Breaking	75		

Table 6 – Operation and Construction Noise Management Levels

Work outside approved construction hours are not expected, however unforeseen constraints relating to delivery of materials or equipment, or other technical requirements, may see some activities undertaken outside approved hours. Where required, out of hours works will be undertaken to meet the noise management levels in **Table 6**.

Development Consent SSD 7016 Condition B14 requires non-standard construction hour work to be inaudible at the nearest sensitive receivers. The Development Consent takes precedence over the ICNG and will be adopted in this plan.

In this instance, "inaudible" means the activity is not discernible from general operation activities.

7.2 Monitoring Frequency

7.2.1 Compliance Monitoring

The following compliance monitoring, to be undertaken during construction by a suitably qualified noise expert, is recommended for the project:

- Periodic attended noise monitoring at the potentially most affected residences during the day period, with a frequency of once per quarter, during the construction phase of the Project; and
- If exceedance of limits is demonstrated, additional mitigation controls are to be implemented, and follow-up monitoring undertaken within one week of the exceedance.

Construction noise performance is reported as detailed in Section 10.

7.3 Monitoring Locations

Four representative locations have been chosen for monitoring as summarised in **Table 8**. Refer to **Figure 2** for these locations.

Location ID	Monitoring Location
NM1	Oberon Caravan Park
NM2	Intersection Pine Street and Herborn Street
NM3	127 Hazelgrove Road
NM4	Intersection Tasman Street and Earl Street

Table 8 – Noise Monitoring Locations

Noise management levels for each monitoring location are provided in **Table 6**. Where these are exceeded by construction-related noise sources, the exceedance should be investigated (as discussed in **Section 10**) to determine the cause and any necessary mitigation.

7.3.2 Weather Conditions

Monitoring should be undertaken on days of light winds (<5 m/s) and no rain. Wind speed is to be monitored using a hand held wind speed monitor. Rain and too much wind will elevate the noise level. If there is no choice but to monitor in inclement weather, note the conditions on the field sheet.

NMLs listed in Table 6 apply under all meteorological conditions except for the following:

- · Wind speeds greater than 3 metres/second at 10 metres above ground level; or
- Stability category F temperature inversion conditions and wind speeds greater than 2 metres/second at 10 metres above ground level; or
- Stability category G temperature inversion conditions.

Weather conditions measured at the site weather station should be used to determine applicability of meteorological exclusion rules.

APPENDIX

B CALIBRATION CERTIFICATES

6	Acoustic Research Labs ry La	Pent	l 7 Building 2 423 Pe aant Hills NSW AU 61 2 9484 0800 A.B.N w.acousticresear	STRALIA 21	20
			vel Meter 2-3.2013		
	Calibra	tion	Certificate		
	Calibration Numl	er Cl	9073		
	Client Deta	12/	bal Acoustics Pty Ltd 16 Huntingdale Drive ornton NSW 2322		
	ment Tested/ Model Numbe Instrument Serial Numbe Microphone Serial Numbe Pre-amplifier Serial Numbe	r: 301 r: 047	31882 39		
Ambient Ten Relative	mospheric Conditions aperature : 24.5°C Humidity : 54.5% Pressure : 99.30kPa		Relativ	spheric Condit emperature : e Humidity : ric Pressure :	23.6°C 51%
	ician : Charlie Neil Date : 5 Feb 2019		Secondary Check: Report Issue Date :	Lewis Boorn	
Clause and Charact	Approved Signator	$:\mathcal{H}$	10		Ken William
15: Electrical Sig. tests 14: Frequency and time 15: Long Term Stabilit 16: Level linearity on t	y he reference level range hmitted for testing has successfully o	Result Pass Pass Pass Pass Pass Pass Pass Pas	Clause and Characte 17: Level linearity incl. d 18: Toneburst response 19: C Weighted Peak Sor 20: Overload Indication 21: High Level Stability be class 1 periodic tests of IEC tests were performed.	te level range cos md Level	Pass Pass Pass Pass
harden strength and strength and the	available, from an independent testi with EC 61672-2:2013, to demoni 13; the sound level meter submitted	TIMO LPART CPM	model of plant land include to	The department of the state	the state of the set of the set
Acoustic Tests	Learn Une		Measurement -		
II.3 Hz to 8kHz 12.5kHz 16kHz Electrical Tests 31.5 Hz to 20 kHz	+0.15dB +0.2dB =0.2430 +0.11dB		Relative Humility Barcometric Pressure	+0.2°C +2.4% +0.015kPa	
	All uncertainties are derived at th	e 95% comp	ldence level with a coverage fa	ctur of 2.	
	This calibration certificate is to be	read in co	junction with the calibration is	nogn te	
NATA	Acoustic Research Labs Pty Ltd in Accordited for compliance with B	NATA A	credited Laboratory Number 1		
	The results of the tests, calibration Australian/hational standards	ts and/or m	insummits included in this do		
ACCRETITATION				mutual recognition	

Global Acoustics Pty Ltd | PO Box 3115 | Thornton NSW 2322 Telephone +61 2 4966 4333 | Email global@globalacoustics.com.au ABN 94 094 985 734

6))) Research	Unit 36/14 Loyalty Rd North Rocks NSW AUSTF Ph: +61294840800 A.B.N.	RALIA 2151 65 160 399 119
V	Labs Pty Ltd	www.acousticresearc	ch.com.au
		d Calibrator	
	Calibrat	ion Certificate	
	Calibration Number	r C20155	
	Client Detail	s Global Acoustics Pty Ltd 12/16 Huntingdale Dr Thornton NSW 2322	
Equip	ment Tested/ Model Number Instrument Serial Number		
		pheric Conditions	
	Ambient Temperature Relative Humidity		
	Barometric Pressure		
Calibration Tech Calibration		Secondary Check: Report Issue Date :	Alannah Squires 12 Mar 2020
	Approved Signatory	Bil	Ken Williams
Characteristic Tes Generated Sound Pre		Result Pass	
Frequency Generated Total Distortion		Pass Pass	
	Nominal Level Nomina 94	I Frequency Measured Le 1000 94.13	vel Measured Frequency 1000.37
	re level(s) and frequency(ies) stated, for	requirements for periodic testing, describ or the environmental conditions under wh stainties of Measurement -	
Specific Tests Generated SPL	10.14dB	Environmental Conditions	40.2℃
Frequency	±0.09%	Relative Humidity	*2.4%
Distortion	±0.09%	Barometric Pressure 95% confidence level with a coverage fa	±0.015kPa
	All uncertainties are derived of the	yyy conjuctice terter with a concruge ju	clor by £.
	The tests <1000 kHz are not covered b	19 Acoustic Research Labs Pty Ltd NAT/	A accreditation.
•		ense engene en enge	
	This calibration certificate is to be	read in conjunction with the calibration to	est report.
~		NATA Accredited Laboratory Number 1	
NATA	Acoustic Research Labs Pty Ltd is Accredited for compliance with IS0	NATA Accredited Laboratory Number 1	4172
~	Acoustic Research Labs Pty Ltd is Accredited for compliance with 150 The results of the tests, calibration units NATA is a signatory to the ILAC 9	NATA Accredited Laboratory Number I O/IEC 17025 - calibration. s and/or measurements included in this de Mutual Recognition Arrangement for the t	4172. scument are traceable to SI
NATA	Acoustic Research Labs Pty Ltd is Accredited for compliance with 150 The results of the tests, calibration units NATA is a signatory to the ILAC 9	NATA Accredited Laboratory Number 1 O/IEC 17025 - calibration. s and/or measurements included in this de	4172. scument are traceable to SI

Borg Panels Facility

Environmental Noise Monitoring Quarter 3 2020

Prepared for Borg Manufacturing Pty Ltd

Noise and Vibration Analysis and Solutions

Global Acoustics Pty Ltd PO Box 3115 | Thornton NSW 2322 Telephone +61 2 4966 4333 Email global@globalacoustics.com.au ABN 94 094 985 734

Borg Panels Facility

Environmental Noise Monitoring Quarter 3 2020

Reference: 20238_R01 Report date: 27 October 2020

Prepared for

Borg Manufacturing Pty Ltd 124 Lowes Mount Road Oberon 2787 NSW

Prepared by

Global Acoustics Pty Ltd PO Box 3115 Thornton NSW 2322

asmus

In hilly

Prepared:

Jonathan Erasmus Consultant QA Review:

Jesse Tribby Consultant

Global Acoustics Pty Ltd ~ Environmental noise modelling and impact assessment ~ Sound power testing ~ Noise control advice ~ Noise and vibration monitoring ~ OHS noise monitoring and advice ~ Expert evidence in Land and Environment and Compensation Courts ~ Architectural acoustics ~ Blasting assessments and monitoring ~ Noise management plans (NMP) ~ Sound level meter and noise logger sales and hire

Table of Contents

1 INTRODUCTION	iii
1.1 Background	iii
1.2 Monitoring Locations	
1.3 Terminology & Abbreviations	5
2 REGULATOR REQUIREMENTS AND NOISE CRITERIA	6
2.1 Development Consent	6
2.2 Environment Protection Licence	6
2.3 Operational Noise Management Plan	6
2.4 Noise Criteria	6
2.5 Meteorological Conditions	7
2.6 Modifying Factors	7
3 METHODOLOGY	8
3.1 Overview	
3.2 Attended Noise Monitoring	8
3.3 Modifying Factors	9
3.4 Monitoring Equipment	9
4 RESULTS	10
4.1 Total Measured Noise Levels	
4.2 Modifying Factors	
4.3 Attended Noise Monitoring	11
4.4 Atmospheric Conditions	
5 SUMMARY	

Appendices

A	REGULATOR DOCUMENTS	.13
B	CALIBRATION CERTIFICATES	.22

1 INTRODUCTION

1.1 Background

Global Acoustics was engaged by Borg Manufacturing Pty Ltd to conduct a noise survey of operations and construction at the Borg panel manufacturing facility (Borg) near Oberon, NSW. The purpose of the survey was to quantify and describe the acoustic environment around the site and compare results with specified limits.

Attended environmental noise monitoring described in this report was undertaken during the day periods of 28 September 2020 at four monitoring locations around Borg.

1.2 Monitoring Locations

Monitoring locations are detailed in Table 1.1 and shown in Figure 1. It should be noted that Figure 1 shows the actual monitoring position, not the location of residences.

Report DescriptorMonitoring LocationNM1Oberon Caravan ParkNM2Intersection of Pine Street and Herborn StreetNM3127 Hazelgrove RoadNM4Intersection of Tasman Street and Earl Street

Table 1.1: ATTENDED MONITORING LOCATIONS

Figure 1: Attended Noise Monitoring Locations

Global Acoustics Pty Ltd | PO Box 3115 | Thornton NSW 2322 Telephone +61 2 4966 4333 | Email global@globalacoustics.com.au ABN 94 094 985 734

1.3 Terminology & Abbreviations

Some definitions of terms and abbreviations which may be used in this report are provided in Table 1.2.

Table 1.2: TERMINOLOGY & ABBREVIATIONS

Descriptor	Definition
dB(A)	Noise level measurement units are decibels (dB). The "A" weighting scale is used to describe human response to noise.
L _{Amax}	The maximum A-weighted noise level over a time period.
L _{A1}	The noise level which is exceeded for 1 per cent of the time.
LA1,1minute	The noise level which is exceeded for 1 per cent of the specified time period of 1 minute.
LA10	The noise level which is exceeded for 10 percent of the time.
L _{Aeq}	The average noise A-weighted energy during a measurement period.
L _{A50}	The noise level which is exceeded for 50 per cent of the time and the median noise level during a measurement period.
LA90	The level exceeded for 90 percent of the time. The LA90 level is often referred to as the "background" noise level and is commonly used to determine noise criteria for assessment purposes.
L _{Amin}	The minimum A-weighted noise level over a time period.
L _{Ceq}	The average C-weighted noise energy during a measurement period. The "C" weighting scale is used to take into account low-frequency components of noise within the audibility range of humans.
SPL	Sound pressure level. Fluctuations in pressure measured as 10 times a logarithmic scale, with the reference pressure being 20 micropascals.
Hertz (Hz)	The frequency of fluctuations in pressure, measured in cycles per second. Most sounds are a combination of many frequencies together.
AWS	Automatic weather station used to collect meteorological data, typically at an altitude of 10 metres
VTG	Vertical temperature gradient in degrees Celsius per 100 metres altitude.
Sigma-theta	The standard deviation of the horizontal wind direction over a period of time.
SC	Stability class (or category) is determined from measured wind speed and either sigma-theta or VTG.
IA	Inaudible. When site noise is noted as IA then there was no site noise at the monitoring location.
NM	Not Measurable. If site noise is noted as NM, this means some noise was audible but could not be quantified.
Day	This is the period 7:00am to 6:00pm.
Evening	This is the period 6:00pm to 10:00pm.
Night	This is the period 10:00pm to 7:00am.

2 REGULATOR REQUIREMENTS AND NOISE CRITERIA

2.1 Development Consent

The most current development consent associated with activities at Borg is Development Consent SSD 7016 (the consent), most recently modified 22 May 2020. The sections of the consent relating to noise are reproduced in Appendix A.

2.2 Environment Protection Licence

Borg holds Environment Protection Licence (EPL) No. 3035 issued by the Environment Protection Authority (EPA) most recently on 4 September 2019. Relevant sections of the EPL are reproduced in Appendix A.

2.3 Operational Noise Management Plan

Noise monitoring requirements are detailed in the Borg Operational Noise Management Plan (ONMP) and Construction Noise Management Plan (CNMP). The most recent version of the ONMP was approved in December 2017. The most recent version of the CNMP was approved in June 2017. Relevant sections of the ONMP and CNMP are reproduced in Appendix A.

2.4 Noise Criteria

Noise limits are consistent between the consent and EPL and have been reproduced in Table 2.1 below.

Table 2.1: IMPACT ASSESSMENT CRITERIA

Location	Day LAeq,15minute dB	Evening LAeq,15minute dB	Night LAeq,15minute dB
All sensitive receivers	55	50	45

Construction noise criteria for each monitoring location are detailed in Table 2.2 and Table 2.3.

Table 2.2: GENERAL CONSTRUCTION NOISE LIMITS

Report Descriptor	Day LAeq,15minute dB	Evening LAeq,15minute dB	Night LAeq,15minute dB
NM1	55	50	45
NM2	55	50	45
NM3	55	50	45
NM4	55	50	45

Report Descriptor	Day LAeq,15minute dB	
NM1	75	
NM2	75	
NM3	75	
NM4	75	

Table 2.3: ROCK/CONCRETE BREAKING NOISE LIMITS

2.5 Meteorological Conditions

As described in the consent, noise generated by Borg is to be measured in accordance with the relevant procedures and exemptions (including certain meteorological conditions) of the NSW Industrial Noise Policy (INP), as follows:

- during rain and wind speeds greater than 3 metres/second at 10 metres above ground level; or
- stability category F temperature inversion conditions and wind speeds greater than 2 metres/second at 10 metres above ground level; or
- stability category G temperature inversion conditions.

2.6 Modifying Factors

The EPA 'Noise Policy for Industry' (NPfI, 2017) was approved for use in NSW in October 2017. For assessment of modifying factors, the NPfI immediately superseded the 'Industrial Noise Policy' (INP, 2000), as outlined in the EPA document 'Implementation and transitional arrangements for the Noise Policy for Industry' (2017). Assessment and reporting of modifying factors has been undertaken in accordance with Fact Sheet C of the NPfI.

3 METHODOLOGY

3.1 Overview

Attended environmental noise monitoring was conducted in general accordance with Australian Standard AS1055 'Acoustics, Description and Measurement of Environmental Noise', relevant NSW EPA requirements, and the Borg ONMP and CNMP. Meteorological data was obtained from the Borg automatic weather station (AWS) which allowed correlation of atmospheric parameters with measured noise levels.

3.2 Attended Noise Monitoring

During this survey, attended monitoring was undertaken during the day period at each location. The duration of each measurement was 15 minutes. Atmospheric condition measurement was also undertaken at each monitoring location.

This survey presents noise levels gathered during attended monitoring that are the result of many sounds reaching the sound level meter microphone during monitoring. Received levels from various noise sources were noted during attended monitoring and particular attention was paid to the extent of Borg's contribution, if any, to measured levels. At each receptor location, Borg's $L_{Aeq,15minute}$ and $L_{A1,1minute}$ (in the absence of any other noise) was measured directly, where possible, or, determined by frequency analysis.

If the exact contribution of the source of interest (in this case Borg) cannot be established, due to masking by other noise sources in a similar frequency range, but site noise levels are observed to be well below (more than 5 dB lower than) any relevant criterion, a maximum estimate of the potential contribution of the site might be made based on other measured site-only noise descriptors in accordance with Section 7.1 of the NPfI. This is generally expressed as a 'less than' quantity, such as <20 dB or <30 dB.

The terms 'Inaudible' (IA) or 'Not Measurable' (NM) may also be used in this report. When site noise is noted as IA, no site noise was audible at the monitoring location. When site noise is noted as NM, this means some noise was audible but could not be quantified. If site noise was NM due to masking but estimated to be significant in relation to a relevant criterion, we would employ methods (e.g. measure closer and back calculate) to determine a value for reporting.

All sites noted as NM in this report are due to one or more of the following reasons:

- Site noise levels were extremely low and unlikely, in many cases, to be even noticed;
- Site noise levels were masked by another relatively loud noise source that is characteristic of the environment (e.g. breeze in foliage or continuous road traffic noise) that cannot be eliminated by moving closer; and/or
- It was not feasible, nor reasonable to employ methods such as move closer and back calculate. Cases may include, but are not limited to, rough terrain preventing closer measurement, addition/removal of significant source to receiver shielding caused by moving closer, and meteorological conditions where back calculation may not be accurate.

A measurement of $L_{A1,1minute}$ corresponds to the highest noise level generated for 0.6 second during one minute. In practical terms this is the highest noise level, or L_{Amax} , received from the site during the entire measurement period (i.e. the highest level of the worst minute during the 15 minute measurement).

Page 9

Often extraneous noise events (for example, road traffic pass-bys and dogs) interfere with the measurement of site noise levels in the frequency range of interest. Where required, the sound level meter is paused during these occurrences to aid in quantification of the site only $L_{Aeq,15minute}$ level.

3.3 Modifying Factors

All measurements were evaluated for potential modifying factors in accordance with the NPfI. Specific methodology for assessment of each modifying factor is outlined in Fact Sheet C of the NPfI.

Assessment of modifying factors is undertaken at the time of measurement if the site was audible and directly quantifiable, such that the site-only L_{Aeq} was not "NM" or less than a maximum cut off value (e.g. "<20 dB" or "<30dB").

If applicable, modifying factors have been reported and added to measured site-only L_{Aeq} noise levels when meteorological conditions satisfied requirements for site noise criteria to be applicable. Low-frequency modifying factors have only been applied to site-only L_{Aeq} levels if Borg was the only contributing low-frequency noise source.

3.4 Monitoring Equipment

Table 3.1 lists the equipment used to measure environmental noise levels. Calibration certificates are provided in Appendix B.

Table 3.1: ATTENDED NOISE MONITORING EQUIPMENT

Model	Serial Number	Calibration Due Date
Rion NA-28 sound level meter	30131882	05/02/2021
Pulsar 105 acoustic calibrator	78226	01/02/2021

4 RESULTS

4.1 Total Measured Noise Levels

Overall noise levels measured at each location during attended measurements are provided in Table 4.1.

Table 4.1: MEASURED NOISE LEVELS – QUARTER 3 2020¹

Location	Start Date and Time	L _{Amax} dB	L _{A1} dB	L _{A10} dB	L _{Aeq} dB	L _{A50} dB	L _{A90} dB	L _{Amin} dB
NM1	28/09/2020 09:57	61	54	49	47	45	44	41
NM2	28/09/2020 10:39	67	55	47	46	43	40	37
NM3	28/09/2020 09:08	69	52	43	42	37	33	31
NM4	28/09/2020 09:32	65	56	45	44	36	34	31

Notes:

1. Levels in this table are not necessarily the result of activity at Borg.

4.2 Modifying Factors

Measured site-only levels were assessed for the applicability of modifying factors in accordance with the NPfI and methodology described in Section 3.3.

There were no modifying factors, as defined in the NPfI, applicable during the survey.

4.3 Attended Noise Monitoring

Table 4.2 compares measured LAeq,15minute levels from Borg with the project specific noise criteria.

Location	Start Date and Time	Wind Speed m/s	Stability Class	Criterion dB	Criterion Applies? ¹	Borg LAeq,15min dB ²	Exceedance ^{3,4}
NM1	28/09/2020 09:57	1.4	А	55	Yes	44	Nil
NM2	28/09/2020 10:39	1.8	А	55	Yes	NM	Nil
NM3	28/09/2020 09:08	1.1	А	55	Yes	31	Nil
NM4	28/09/2020 09:32	1.1	А	55	Yes	35	Nil

Table 4.2: LAea,15minute GENERATED BY BORG AGAINST CRITERIA – QUARTER 3 2020

Notes:

1. Noise criteria apply under all meteorological conditions except those detailed in Section 2.5;

2. Site-only LAeq, 15minute attributed to Borg, including modifying factors if applicable;

3. Bold results in red indicate exceedance of criterion (if applicable); and

4. NA in exceedance column means atmospheric conditions outside conditions specified, therefore criterion was not applicable.

4.4 Atmospheric Conditions

Atmospheric condition data measured by the operator during each measurement using a Kestrel hand-held weather meter is shown in Table 4.3. The wind speed, direction and temperature were measured at approximately 1.8 metres. Attended noise monitoring is not undertaken during rain, hail, or wind speeds above 5 m/s at microphone height.

Table 4.3: MEASURED ATMOSPHERIC CONDITIONS – QUARTER 3 2020

Location	Start Date and Time	Temperature ° C	Wind Speed m/s	Wind Direction ^o Magnetic North ¹	Cloud Cover 1/8s
NM1	28/09/2020 09:57	10	2.0	320	1
NM2	28/09/2020 10:39	9	1.1	350	1
NM3	28/09/2020 09:08	12	-	-	1
NM4	28/09/2020 09:32	14	-	-	1

Notes:

1. "-" indicates calm conditions at monitoring location.

Meteorological data used for compliance assessment is sourced from the Borg AWS.

5 SUMMARY

Global Acoustics was engaged by Borg Manufacturing Pty Ltd to conduct a noise survey of operations at the Borg panel manufacturing facility (Borg) near Oberon, NSW. The purpose of the survey was to quantify and describe the acoustic environment around the site and compare results with specified limits.

Attended environmental noise monitoring described in this report was undertaken during the day period of 28 September 2020 at four monitoring locations around Borg.

Borg operations complied with the relevant criteria during the Quarter 3 2020 survey at all monitoring locations. Criteria may not always be applicable due to meteorological conditions at the time of monitoring.

Global Acoustics Pty Ltd

APPENDIX

A **REGULATOR DOCUMENTS**

Global Acoustics Pty Ltd | PO Box 3115 | Thornton NSW 2322 Telephone +61 2 4966 4333 | Email global@globalacoustics.com.au ABN 94 094 985 734

A.1 DEVELOPMENT CONSENT SSD 7016

NOISE

Hours of Work

B13. The Applicant must comply with the hours detailed in **Table 1**, unless otherwise agreed in writing by the Secretary.

Table 1: Hours of Work

Activity	Day	Time
Earthworks and Construction	Monday – Friday Saturday	7 am to 7 pm 8 am to 1 pm
Operation	Monday – Sunday	24 hours

- B14. Works outside of the hours identified in Condition B13 may be undertaken in the following circumstances:
 - (a) works that are inaudible at the nearest sensitive receivers;
 - (b) works agreed to in writing by the Secretary;
 - (c) for the delivery of materials required outside these hours by the NSW Police Force or other authorities for safety reasons; or
 - (d) where it is required in an emergency to avoid the loss of lives, property and/or to prevent environmental harm.

Construction Noise Management Plan

- B15. The Applicant must prepare a Construction Noise Management Plan (CNMP) for the Project to manage construction noise. The plan must form part of the CEMP required by Condition C1 and must:
 - (a) be prepared by a suitably qualified and experienced noise expert;
 - (b) be approved by the Secretary prior to the commencement of construction of the Project;
 - (c) describe procedures for achieving the noise limits in Table 2;
 - (d) describe the measures to be implemented to manage noisy works such as rock/concrete breaking activities, in close proximity to sensitive receivers;
 - (e) include strategies that have been developed with the community for managing noisy works;
 - (f) describe the community consultation undertaken to develop the strategies in e) above; and
 - (g) include a complaints management system that would be implemented for the duration of the Project.

Operational Noise Limits

B16. The Applicant must ensure that noise generated by the Development does not exceed the noise limits in **Table 2**.

Table 2: Noise Limits dB(A)

Location	Day	Evening	Night
	LAeg(15 minute)	LAeg(15 minute)	LAeg(15 minute)
All sensitive receivers	55	50	45

Note: Noise generated by the Development is to be measured in accordance with the relevant procedures and exemptions (including certain meteorological conditions) of the NSW Industrial Noise Policy.

Noise Mitigation

B17. The Applicant must ensure all noise attenuation measures already installed for the Existing Development are maintained in good working order for the life of the Development.

Operational Noise Management Plan

- B18. Within 6 months of the date of this consent, the Applicant must prepare an Operational Noise Management Plan (ONMP) for the Existing Development, to manage operational noise to the satisfaction of the Secretary. The ONMP must form part of the OEMP required by Condition C4 and be prepared in accordance with Condition C9. The ONMP must:
 - (a) be prepared by a suitably qualified and experienced noise expert;
 - (b) describe the measures that will be implemented to minimise noise from the Existing Development including:
 - (i) all reasonable and feasible measures being employed on site;
 - (ii) maintain equipment to ensure it is in good order;
 - (iii) traffic noise is effectively managed;
 - (iv) the noise impacts of the Existing Development are minimised during any meteorological conditions when the noise criteria in this consent do not apply;
 - (v) compliance with the relevant conditions of this consent;
 - (c) includes a noise monitoring program that:
 - (i) must be carried out until otherwise agreed to in writing by the Secretary;
 - (ii) is capable of evaluating the performance of the Existing Development; and
 - (iii) includes a protocol for determining exceedances of the relevant conditions of this consent and responding to complaints; and
 - (d) include a procedure for implementing noise mitigation measures, should the Applicant be directed by the EPA or the Secretary, or should non-compliances be detected.
- B19. Prior to the commencement of operation of the Project, the Applicant must update the ONMP required under Condition B18, to incorporate the Project and its management, to the satisfaction of the Secretary. The updated plan must be prepared in accordance with the requirements of Condition B18, and must incorporate the following:
 - (a) description of the noise monitoring program to measure the performance of the Development against this consent and the EPL; and
 - (b) description of any additional measures that would be implemented for the Development to ensure compliance with the noise limits in Condition B16 and the EPL.
 - (c) details of the noise attenuation measures for the gas turbine and ancillary equipment associated with the particleboard material handling area.
- (d) details of the noise attenuation measures for the materials handling equipment approved for installation and operation under SSD-7016-Mod-3.

Noise Verification

- B20. Within 3 months of commencement of operation of the Project, the Applicant must undertake a noise verification study for the Development to the satisfaction of the Secretary. The study must:
 - (a) be undertaken by a suitably qualified expert;
 - (b) include an analysis of compliance with noise limits specified in Condition B16;
 - demonstrate achievement of the sound power levels in Table 12 of the Borg Panels Timber Panel Processing Facility Noise and Vibration Impact Assessment, dated May 2016 and prepared by Global Acoustics;
 - (d) include an outline of management actions to be taken to address any exceedances of the limits specified in Condition B16; and
 - (e) describe the contingency measures in the event management actions are not effective in reducing noise levels to an acceptable level.

Within 1 month of completing the study, the Applicant must submit a report outlining the findings of the study to the Secretary and the EPA.

- B20A. Within three months of the commissioning of the gas turbines and ancillary equipment, the Applicant must undertake a noise verification study for the Development to the satisfaction of the Secretary. The study must:
 - (a) be undertaken by a suitably qualified expert; and
 - (b) include an analysis of compliance with noise limits specified in Condition B16;
 - (c) include an outline of management actions to be taken to address any exceedances of the limits specified in Condition B16; and
 - (d) describe the contingency measures in the event management actions are not effective in reducing noise levels to an acceptable level.

Page 15

- B20B Within three months of commissioning the materials handling equipment approved for installation and operation under SSD-7016-Mod-3, the Applicant must undertake a Noise Verification Study for the Development to the satisfaction of the Secretary. The Study must:
 - (a) be undertaken by a suitably qualified expert;
 - (b) include an analysis of compliance with noise limits specified in Condition B16;
 - (c) include an outline of management actions to be taken to address any exceedances of the limits specified in Condition B16; and
 - (d) describe the contingency measures in the event management actions are not effective in reducing noise levels to an acceptable level.
- B21. Should the noise verification study indicate the Development has not complied with the noise limits in Condition B16 and applicable EPL requirements, or where the verification indicates that greater impacts than predicted in the EIS may arise, a detailed investigation and an outline of any management measures necessary to prevent exceedances must be submitted to the Secretary and the EPA, as part of the study.
- B26. Within 3 months of commissioning the two cogeneration units, the Applicant, in consultation with the EPA, must undertake post-commissioning noise monitoring of the cogeneration units to demonstrate the operation of the cogeneration units do not exceed the noise criteria at sensitive receivers as described in Section 7.0 of *Gas Fire Co-generators Noise Impact Assessment* prepared by Vipac Engineers and Scientists, dated 2 July 2015.

Within 1 month of completing the study, the Applicant must submit a report outlining the findings of the study to the Secretary and the EPA.

B27. Should the post-commissioning emissions verification study indicate the two cogeneration units have not demonstrated compliance with the NIA, a detailed investigation and an outline of any management measures necessary to prevent exceedances must be submitted to the Secretary and the EPA, as part of the study.

Noise

Attenuation, as detailed in the NIA, will be implemented as follows:

- Conti 1 Dryer Fan air intake redesigned and the fan speed reduced to minimise noise generated. A sound power
 reduction from LAeg 121 dB to 114 dB or better is required.
- Booster fan will receive additional insulation and a reduction in fan speed. A sound power reduction from LAeq 116 dB to 109 dB or better is required.
- Main fibre transport fan will have a concrete enclosure constructed around it. A sound power reduction from LAeq 110 dB to 104 dB or better is required.

In short, the approach taken by Borg to mitigate noise is based on a number of factors:

- Continuation of the use of mobile chippers (that is, not to enclose the mobile chippers). However, these are backup items (only to be used when enclosed, electric chippers are not operational), and will not be used in enhancing met conditions.
- Implementation of additional noise mitigation measures to minimise noise generated by equipment, as detailed above.
- 3. Provision of sound attenuation structures and enclosures to other equipment where appropriate.

Irrespective of the above, Borg undertakes to meet the existing plant sound power reductions specified in the NIA. If the proposed attenuation measures to the existing plant are found to be insufficient in achieving these reductions, additional works will be undertaken.

A.2 ENVIRONMENT PROTECTION LICENCE

L4 Noise limits

- L4.1 Noise from the premises must not exceed:
 - a) 55 dB(A) $L_{Aeq(15 minute)}$ during the day (7am to 6pm); and
 - b) 50 dB(A) $L_{Aeq(15 minute)}$ during the evening (6pm to 10pm); and
 - c) at all other times 45 dB(A) $L_{Aeq (15 minute)}$, except as expressly provided by this licence.

Where LAeq means the equivalent continuous noise level – the level of noise equivalent to the energy-average of noise levels occurring over a measurement period.

- L4.2 To determine compliance with condition L4.1, noise must be measured at or computed for Oberon High School or any other noise sensitive locations (such as a residence/school). A modifying factor correction must be applied for tonal, impulsive or intermittent noise in accordance with the "NSW Industrial Noise Policy (EPA, January 2000)".
- L4.3 The noise limits set out in condition L4.1 apply under all meteorological conditions except for the

following:

- a) Wind speeds greater than 3 metres/second at 10 metres above ground level; or
- b) Stability category F temperature inversion conditions and wind speeds greater than 2 metres/second at 10 metres above ground level; or
- c) Stability category G temperature inversion conditions.
- L4.4 For the purpose of condition L4.3:

a) Data recorded by the meteorological station identified as EPA Licence Point 26 must be used to determine meteorological conditions; and

b) Temperature inversion conditions (stability category) are to be determined by the sigma-theta method referred to in Part E4 of Appendix E to the NSW Industrial Noise Policy.

M7 Other monitoring and recording conditions

M7.1 Noise monitoring to determine compliance with condition L4 must be carried out at least once annually during the day, evening, and night time hours specified by L4.1 at the location(s) specified under condition L4.2 or at the nearest residence, and be undertaken in accordance with Australian Standard AS 2659.1 (1998) Guide to use of sound measuring equipment - portable sound level meters, and the compliance monitoring guidance provided in the NSW Industrial Noise Policy.

A.3 OPERATIONAL NOISE MANAGEMENT PLAN

7.3 Attended Noise Monitoring

Attended noise monitoring is preferred to the use of noise loggers when determining compliance with prescribed limits as it allows the most accurate determination of the contribution, if any, to measured noise levels by the source of interest.

Operational noise impacts are potentially greatest at night when background levels are typically low and the allowable levels are correspondingly low, and, this is the period when noise propagation enhancement is most likely.

7.3.1 Compliance Monitoring

It is proposed to conduct compliance monitoring for the Existing Development at each location once per year during the day, evening and night periods (pending weather and operational constraints) with results compared to noise criteria in **Table 3**. Compliance monitoring should be conducted during the winter period as this season represents the likely worst-case season due to temperature inversions.

Any exceedance of a noise criterion recorded during regular attended noise monitoring is to be investigated. The acoustic consultant undertaking the attended monitoring is to contact the Environment Officer as soon as practicable to advise of the recorded results. If exceedance of limits is demonstrated follow-up monitoring is to be undertaken within one week of the exceedance. The regular monitoring frequency will be resumed if no further exceedances are measured.

Attended compliance monitoring is to be undertaken by a suitably qualified noise expert. Appropriate techniques should be applied to determine noise contributions from the Existing Development in isolation (in the absence of all extraneous noise sources). These techniques could include, but are not limited to:

- Pausing the sound level meter during extraneous noise events, for example, when a
 dog is barking or road traffic noise is clearly audible and affecting the measurements;
- Using frequency filtering techniques where certain frequencies of noise are excluded from the measurements; or
- Using other noise descriptors such as LA90 or LA50 to filter extraneous noise events.

The Existing Development should be fully operational at the time of monitoring.

Operational noise performance is reported as detailed in Section 9.

7.4 Monitoring Locations

Four representative locations have been chosen for monitoring as summarised in **Table 6**. Refer to **Figure 2** for these locations.

Location ID	Monitoring Location
NM1	Oberon Caravan Park
NM2	Intersection Pine Street and Herborn Street
NM3	127 Hazelgrove Road
NM4	Intersection Tasman Street and Earl Street

Table 6 – Noise Monitoring Locations

Noise management levels for each monitoring location are provided in **Table 3**. Where these are exceeded from operational noise sources, the exceedance should be investigated (as discussed in **Section 9**) to determine the cause and any necessary mitigation.

7.5 Meteorological Conditions

Monitoring should be undertaken on days of light winds (<5 m/s) and no rain. Wind speed is to be monitored using a hand held wind speed monitor. Rain and too much wind will elevate the noise level. If there is no choice but to monitor in inclement weather, note the conditions.

Meteorological data is obtained from the Borg Panels weather station (EPA Identification Point 26). This data allows correlation of atmospheric parameters and measured noise levels. Atmospheric condition measurement at ground level is also undertaken during attended monitoring.

10 ONMP Review

In accordance with Development Consent SSD 7016 Condition C10, this ONMP will be reviewed and if necessary revised within 3 months of an:

- Approval of a modification;
- Submission of an incident report under Condition C13;
- Approval of an Annual Review under Condition C11; or
- Completion of an audit under Condition C15.

Revisions to the ONMP will be submitted to the Secretary DP&E for approval.

A.4 CONSTRUCTION NOISE MANAGEMENT PLAN

5 Construction Noise Management Levels

Construction activities will be undertaken simultaneously with regular operation of the existing site. Borg propose to generally restrict site noise emission from both construction and operational tasks combined to comply with operational noise criteria conditioned in Development Consent SSD 7016 and EPL 3035.

Following consideration of the ICNG (Section 2.6), Development Consent (SSD 7016) conditions (Section 2.2), EPL 3035 (Section 2.4) and the measured background noise levels (refer Global Acoustics, May 2016), Table 6 summarises the Noise Management Levels (NMLs) for all residential receivers.

Location	Activity	Day (7am-6pm)	Evening (6pm-10pm)	Night (10pm-7am)
		LAeq (15 min)	LAeq (15 min)	LAeq (15 min)
All residential receivers	General Construction	55	50	45
	Rock/ Concrete Breaking	75		

Table 6 – Operation and Construction Noise Management Levels

Work outside approved construction hours are not expected, however unforeseen constraints relating to delivery of materials or equipment, or other technical requirements, may see some activities undertaken outside approved hours. Where required, out of hours works will be undertaken to meet the noise management levels in **Table 6**.

Development Consent SSD 7016 Condition B14 requires non-standard construction hour work to be inaudible at the nearest sensitive receivers. The Development Consent takes precedence over the ICNG and will be adopted in this plan.

In this instance, "inaudible" means the activity is not discernible from general operation activities.

7.2 Monitoring Frequency

7.2.1 Compliance Monitoring

The following compliance monitoring, to be undertaken during construction by a suitably qualified noise expert, is recommended for the project:

- Periodic attended noise monitoring at the potentially most affected residences during the day period, with a frequency of once per quarter, during the construction phase of the Project; and
- If exceedance of limits is demonstrated, additional mitigation controls are to be implemented, and follow-up monitoring undertaken within one week of the exceedance.

Construction noise performance is reported as detailed in Section 10.

7.3 Monitoring Locations

Four representative locations have been chosen for monitoring as summarised in **Table 8**. Refer to **Figure 2** for these locations.

Location ID	Monitoring Location
NM1	Oberon Caravan Park
NM2	Intersection Pine Street and Herborn Street
NM3	127 Hazelgrove Road
NM4	Intersection Tasman Street and Earl Street

Table 8 – Noise Monitoring Locations

Noise management levels for each monitoring location are provided in **Table 6**. Where these are exceeded by construction-related noise sources, the exceedance should be investigated (as discussed in **Section 10**) to determine the cause and any necessary mitigation.

7.3.2 Weather Conditions

Monitoring should be undertaken on days of light winds (<5 m/s) and no rain. Wind speed is to be monitored using a hand held wind speed monitor. Rain and too much wind will elevate the noise level. If there is no choice but to monitor in inclement weather, note the conditions on the field sheet.

NMLs listed in Table 6 apply under all meteorological conditions except for the following:

- · Wind speeds greater than 3 metres/second at 10 metres above ground level; or
- Stability category F temperature inversion conditions and wind speeds greater than 2 metres/second at 10 metres above ground level; or
- Stability category G temperature inversion conditions.

Weather conditions measured at the site weather station should be used to determine applicability of meteorological exclusion rules.

APPENDIX

B CALIBRATION CERTIFICATES

Global Acoustics Pty Ltd | PO Box 3115 | Thornton NSW 2322 Telephone +61 2 4966 4333 | Email global@globalacoustics.com.au ABN 94 094 985 734

Y	Labs Pty Lo	d ww	51294840800 A.B.N W.acousticresea	rch.com.au	19
		1d Lev	el Meter		
		tion	Certificate		
	Client Det	12/1	oal Acoustics Pty Ltd 6 Huntingdale Drive mton NSW 2322		
	ment Tested/ Model Numbe Instrument Serial Numbe Microphone Serial Numbe Pre-amplifier Serial Numbe	er: 301 er: 047	1882 9		
Pre-Test At Ambient Ter Relative	mospheric Conditions aperature : 24.5°C Humidity : 54.5% Pressure : 99.39kPa		Relati	spherie Condit emperature : ve Humidity : ric Pressure :	23.6°C 51%
Calibration Techr Calibration	Date : 5 Feb 2019		Secondary Check: Report Issue Date :	Lewis Boorn	an
Clause and Charac	Approved Signator	1.10	10	_	Ken William
 12: Acoustical Sig. test 13: Electrical Sig. tests 14: Frequency and time 15: Long Term Stabilit 	s of a frequency weighting of frequency weightings weightings at 1 kHz	Result Pass Pass Pass Pass Pass Pass	Clause and Charact 17: Level linearity incl. 18: Toneburst response 19: C Weighted Peak So 20: Overload Indication 21: High Level Stability	he level range co	Resu ntrol Pass Pass Pass Pass Pass
The sound level meter su	hmitted for testing has successfully conditions and	completed to	e class 1 periodic tests of Hit lests were performed.	61672-3-2013, for	the environments
PARTER PROPERTY AND	available, from an independent test with IEC 61672-2:2013, to demons 13, the sound level meter submitted	ing organisa	ion responsible for approving	all the stand for some on the second	and shares and the same second of
	Least Un		Measurement -	_	
Acoustic Tasta	+0.13dB		nmental Conditions emperature	+0.2°C	
Acoustic Tests JI.3 Hz to 8kHz	10,24B =0.29dB		lelarive Humidity larometric Pressurg	+2.4% +0.075kPa	
31.3 Hz to 8kHz 12.5kHz 16kHz					
31.3 Hz to 8kHz 12.5kHz	±0,11JB				
J1.3 Hz to 8kHz 12.5kHz 16kHz Electrical Tests	±0,11dB All uncertainties are derived at th		lence level with a coverage f	ictor of 2.	
J1.3 Hz to 8kHz 12.5kHz 16kHz Electrical Testy			lence level with a coverage fi	war of 2.	
J1.3 Hz to 8kHz 12.5kHz 16kHz Electrical Testy		he 95% comfi			
J1.3 Hz to 8kHz 12.5kHz 16kHz Electrical Testy	All uncertainties are derived at il	te 95% confi e read in con	innetion with the calibration i	est report.	
JIJ HE to 8kH: 12.5kHE 12.5kHE 12.5kHE Electrical Tests 31.5 HE to 20 kHE	All uncertainties are derived at it This calibration certificate is to b Acoustic Research Labs Pty Ltd i	ler 95% comfi e read in con in NATA An SO/IEC 170	innetion with the calibration i redited Laboratory Number 1 5 - calibration.	est report. 14172	4e 10
31.3 Hz to 8kHz 12.3kHz 16kHz Electrical Testu	All uncertainties are derived at it This calibration certificate is to b Acoustic Research Labs Pty Ltd i Accendited for compliance with f The results of the texts, calibratio	er 95% confi o read in con is NATA Ao SO/IEC 170 ms and/or me	redited Laboratory Number 1 5 - calibration, surrements included in this d	est report. 14172 soument are maceab	

6))) Rese	earch Pty Ltd Sound	Level 7 Build Pennant Hills Ph: +6129484 www.acou Calibrate 60942-2017	NSW AU 0800 A.B.N sticresear	STRALIA	2120
	Ca	libratio	on Cert	ificate		
	Calibra	tion Number	C19074			
	C	lient Details	Global Acoust 12/16 Hunting Thornton NS	dale Drive		
Equip	ment Tested/ Mod Instrument Seri		Model 105 78226			
	Ambient Te	Atmosph mperature :	eric Condition	5		
	Relativ	e Humidity : ic Pressure :	53.7%			
Calibration Tech Calibration	Date : 1 Feb 20	19		dary Check: Issue Date :	Lewis Bo 6 Feb 201	0
Characteristic Test		Signatory :	sult			Ken William
Generated Sound Pres Frequency Generated Total Distortion	sure Level	Pi Pi	555 153 153			
Pre Adjustment	Nominal Level 94.0		requency 0.0	Measured Lo	wel Mea	sured Frequency
Post Adjustment	94.0		0.0	94.1		1000,39
The sound calibrator has the sound pressure	been shown to conform re-level(s) and frequency	v(ses) stated, for t	ic cirvitorimental (a)	iditions under wh	ed in Annex B lich the tests we	of HC 60942/2017 fo re performed
Specific Tests Generated SPL	=0.11dB	Least Uncertai	nties of Measureme Environmental Co	militions	D-Rever	
Frequency Distortion	±0.0/% ±0.48%		Temperatury Relative Hun Barometric I	nidity	=0.2%? =2.4% =0.015kPa	
	All uncertainties are	derived at the 95	% confidence level	with a coverage fo	wor of 2	
-	This calibration cert	ificate is to be rea	à in conjunction wit	h the calibration t	est report.	
ALATA A	Acoustic Research 1 Accredited for comp	abs Pty Ltd is NA fiance with ISO/I	TA Accredited Lab EC 17025 - culibrat	oratory Number	4172	
NATA	The results of the ter Australian/national i	ts, calibrations an			ocument are tra	ceable to
ACCERENTATION	NATA is a signatory equivalence of testin	to the ILAC Mut g. medical testing	unl Recognition An calibration and ins	angement for the pection reports.	mutual recogni	tion of the PAGE 1 OF 1

Global Acoustics Pty Ltd | PO Box 3115 | Thornton NSW 2322 Telephone +61 2 4966 4333 | Email global@globalacoustics.com.au ABN 94 094 985 734

Borg Panels Facility

Environmental Noise Monitoring Quarter 4 2020

Prepared for Borg Manufacturing Pty Ltd

Noise and Vibration Analysis and Solutions

Global Acoustics Pty Ltd PO Box 3115 | Thornton NSW 2322 Telephone +61 2 4966 4333 Email global@globalacoustics.com.au ABN 94 094 985 734

Borg Panels Facility

Environmental Noise Monitoring Quarter 4 2020

Reference: 20289_R01_RevA Report date: 1 February 2021

Prepared for

Borg Manufacturing Pty Ltd 124 Lowes Mount Road Oberon 2787 NSW

Prepared by

Global Acoustics Pty Ltd PO Box 3115 Thornton NSW 2322

Reff Une.

Prepared:

Tambalyn Durney Consultant

QA Review: Robert Kirwan

Consultant

Global Acoustics Pty Ltd ~ Environmental noise modelling and impact assessment ~ Sound power testing ~ Noise control advice ~ Noise and vibration monitoring ~ OHS noise monitoring and advice ~ Expert evidence in Land and Environment and Compensation Courts ~ Architectural acoustics ~ Blasting assessments and monitoring ~ Noise management plans (NMP) ~ Sound level meter and noise logger sales and hire

Table of Contents

1 INTRODUCTION	iii
1.1 Background	iii
1.2 Monitoring Locations	
1.3 Terminology & Abbreviations	5
2 REGULATOR REQUIREMENTS AND NOISE CRITERIA	6
2.1 Development Consent	6
2.2 Environment Protection Licence	6
2.3 Operational Noise Management Plan	6
2.4 Noise Criteria	6
2.5 Meteorological Conditions	7
2.6 Modifying Factors	7
3 METHODOLOGY	8
3.1 Overview	
3.2 Attended Noise Monitoring	8
3.3 Modifying Factors	9
3.4 Monitoring Equipment	9
4 RESULTS	
4.1 Total Measured Noise Levels	
4.2 Modifying Factors	10
4.3 Attended Noise Monitoring	11
4.4 Atmospheric Conditions	11
5 SUMMARY	

Appendices

A	REGULATOR DOCUMENTS	.13
B	CALIBRATION CERTIFICATES	.22

1 INTRODUCTION

1.1 Background

Global Acoustics was engaged by Borg Manufacturing Pty Ltd to conduct a noise survey of operations and construction at the Borg panel manufacturing facility (Borg) near Oberon, NSW. The purpose of the survey was to quantify and describe the acoustic environment around the site and compare results with specified limits.

Attended environmental noise monitoring described in this report was undertaken during the day period at four monitoring locations around Borg. Due to unscheduled shut downs and sustained periods of inclement weather including elevated winds and rainfall, Q4 monitoring scheduled for Q4 2020 was delayed until 13 January 2021.

1.2 Monitoring Locations

Monitoring locations are detailed in Table 1.1 and shown in Figure 1. It should be noted that Figure 1 shows the actual monitoring position, not the location of residences.

Report Descriptor	Monitoring Location
NM1	Oberon Caravan Park
NM2	Intersection of Pine Street and Herborn Street
NM3	127 Hazelgrove Road
NM4	Intersection of Tasman Street and Earl Street

Table 1.1: ATTENDED MONITORING LOCATIONS

Figure 1: Attended Noise Monitoring Locations

Global Acoustics Pty Ltd | PO Box 3115 | Thornton NSW 2322 Telephone +61 2 4966 4333 | Email global@globalacoustics.com.au ABN 94 094 985 734

1.3 Terminology & Abbreviations

Some definitions of terms and abbreviations which may be used in this report are provided in Table 1.2.

Table 1.2: TERMINOLOGY & ABBREVIATIONS

Descriptor	Definition
dB(A)	Noise level measurement units are decibels (dB). The "A" weighting scale is used to describe human response to noise.
L _{Amax}	The maximum A-weighted noise level over a time period.
L _{A1}	The noise level which is exceeded for 1 per cent of the time.
LA1,1minute	The noise level which is exceeded for 1 per cent of the specified time period of 1 minute.
LA10	The noise level which is exceeded for 10 percent of the time.
L _{Aeq}	The average noise A-weighted energy during a measurement period.
L _{A50}	The noise level which is exceeded for 50 per cent of the time and the median noise level during a measurement period.
LA90	The level exceeded for 90 percent of the time. The LA90 level is often referred to as the "background" noise level and is commonly used to determine noise criteria for assessment purposes.
L _{Amin}	The minimum A-weighted noise level over a time period.
L _{Ceq}	The average C-weighted noise energy during a measurement period. The "C" weighting scale is used to take into account low-frequency components of noise within the audibility range of humans.
SPL	Sound pressure level. Fluctuations in pressure measured as 10 times a logarithmic scale, with the reference pressure being 20 micropascals.
Hertz (Hz)	The frequency of fluctuations in pressure, measured in cycles per second. Most sounds are a combination of many frequencies together.
AWS	Automatic weather station used to collect meteorological data, typically at an altitude of 10 metres
VTG	Vertical temperature gradient in degrees Celsius per 100 metres altitude.
Sigma-theta	The standard deviation of the horizontal wind direction over a period of time.
SC	Stability class (or category) is determined from measured wind speed and either sigma-theta or VTG.
IA	Inaudible. When site noise is noted as IA then there was no site noise at the monitoring location.
NM	Not Measurable. If site noise is noted as NM, this means some noise was audible but could not be quantified.
Day	This is the period 7:00am to 6:00pm.
Evening	This is the period 6:00pm to 10:00pm.
Night	This is the period 10:00pm to 7:00am.

2 REGULATOR REQUIREMENTS AND NOISE CRITERIA

2.1 Development Consent

The most current development consent associated with activities at Borg is Development Consent SSD 7016 (the consent), most recently modified 22 May 2020. The sections of the consent relating to noise are reproduced in Appendix A.

2.2 Environment Protection Licence

Borg holds Environment Protection Licence (EPL) No. 3035 issued by the Environment Protection Authority (EPA) most recently on 4 September 2019. Relevant sections of the EPL are reproduced in Appendix A.

2.3 Operational Noise Management Plan

Noise monitoring requirements are detailed in the Borg Operational Noise Management Plan (ONMP) and Construction Noise Management Plan (CNMP). The most recent version of the ONMP was approved in October 2020. The most recent version of the CNMP was approved in June 2017. Relevant sections of the ONMP and CNMP are reproduced in Appendix A.

2.4 Noise Criteria

Noise limits are consistent between the consent and EPL and have been reproduced in Table 2.1 below.

Table 2.1: IMPACT ASSESSMENT CRITERIA

Location	Day LAeq,15minute dB	Evening LAeq,15minute dB	Night LAeq,15minute dB
All sensitive receivers	55	50	45

Construction noise criteria for each monitoring location are detailed in Table 2.2 and Table 2.3.

Table 2.2: GENERAL CONSTRUCTION NOISE LIMITS

Report Descriptor	Day LAeq,15minute dB	Evening LAeq,15minute dB	Night LAeq,15minute dB
NM1	55	50	45
NM2	55	50	45
NM3	55	50	45
NM4	55	50	45

Report Descriptor	Day LAeq,15minute dB	
NM1	75	
NM2	75	
NM3	75	
NM4	75	

Table 2.3: ROCK/CONCRETE BREAKING NOISE LIMITS

2.5 Meteorological Conditions

As described in the consent, noise generated by Borg is to be measured in accordance with the relevant procedures and exemptions (including certain meteorological conditions) of the NSW Industrial Noise Policy (INP), as follows:

- during rain and wind speeds greater than 3 metres/second at 10 metres above ground level; or
- stability category F temperature inversion conditions and wind speeds greater than 2 metres/second at 10 metres above ground level; or
- stability category G temperature inversion conditions.

2.6 Modifying Factors

The EPA 'Noise Policy for Industry' (NPfI, 2017) was approved for use in NSW in October 2017. For assessment of modifying factors, the NPfI immediately superseded the 'Industrial Noise Policy' (INP, 2000), as outlined in the EPA document 'Implementation and transitional arrangements for the Noise Policy for Industry' (2017). Assessment and reporting of modifying factors has been undertaken in accordance with Fact Sheet C of the NPfI.

3 METHODOLOGY

3.1 Overview

Attended environmental noise monitoring was conducted in general accordance with Australian Standard AS1055 'Acoustics, Description and Measurement of Environmental Noise', relevant NSW EPA requirements, and the Borg ONMP and CNMP. Meteorological data was obtained from the Borg automatic weather station (AWS) which allowed correlation of atmospheric parameters with measured noise levels.

3.2 Attended Noise Monitoring

During this survey, attended monitoring was undertaken during the day period at each location. The duration of each measurement was 15 minutes. Atmospheric condition measurement was also undertaken at each monitoring location.

This survey presents noise levels gathered during attended monitoring that are the result of many sounds reaching the sound level meter microphone during monitoring. Received levels from various noise sources were noted during attended monitoring and particular attention was paid to the extent of Borg's contribution, if any, to measured levels. At each receptor location, Borg's $L_{Aeq,15minute}$ and $L_{A1,1minute}$ (in the absence of any other noise) was measured directly, where possible, or, determined by frequency analysis.

If the exact contribution of the source of interest (in this case Borg) cannot be established, due to masking by other noise sources in a similar frequency range, but site noise levels are observed to be well below (more than 5 dB lower than) any relevant criterion, a maximum estimate of the potential contribution of the site might be made based on other measured site-only noise descriptors in accordance with Section 7.1 of the NPfI. This is generally expressed as a 'less than' quantity, such as <20 dB or <30 dB.

The terms 'Inaudible' (IA) or 'Not Measurable' (NM) may also be used in this report. When site noise is noted as IA, no site noise was audible at the monitoring location. When site noise is noted as NM, this means some noise was audible but could not be quantified. If site noise was NM due to masking but estimated to be significant in relation to a relevant criterion, we would employ methods (e.g. measure closer and back calculate) to determine a value for reporting.

All sites noted as NM in this report are due to one or more of the following reasons:

- Site noise levels were extremely low and unlikely, in many cases, to be even noticed;
- Site noise levels were masked by another relatively loud noise source that is characteristic of the environment (e.g. breeze in foliage or continuous road traffic noise) that cannot be eliminated by moving closer; and/or
- It was not feasible, nor reasonable to employ methods such as move closer and back calculate. Cases may include, but are not limited to, rough terrain preventing closer measurement, addition/removal of significant source to receiver shielding caused by moving closer, and meteorological conditions where back calculation may not be accurate.

A measurement of $L_{A1,1minute}$ corresponds to the highest noise level generated for 0.6 second during one minute. In practical terms this is the highest noise level, or L_{Amax} , received from the site during the entire measurement period (i.e. the highest level of the worst minute during the 15 minute measurement).

Often extraneous noise events (for example, road traffic pass-bys and dogs) interfere with the measurement of site noise levels in the frequency range of interest. Where required, the sound level meter is paused during these occurrences to aid in quantification of the site only $L_{Aeq,15minute}$ level.

3.3 Modifying Factors

All measurements were evaluated for potential modifying factors in accordance with the NPfI. Specific methodology for assessment of each modifying factor is outlined in Fact Sheet C of the NPfI.

Assessment of modifying factors is undertaken at the time of measurement if the site was audible and directly quantifiable, such that the site-only L_{Aeq} was not "NM" or less than a maximum cut off value (e.g. "<20 dB" or "<30dB").

If applicable, modifying factors have been reported and added to measured site-only L_{Aeq} noise levels when meteorological conditions satisfied requirements for site noise criteria to be applicable. Low-frequency modifying factors have only been applied to site-only L_{Aeq} levels if Borg was the only contributing low-frequency noise source.

3.4 Monitoring Equipment

Table 3.1 lists the equipment used to measure environmental noise levels. Calibration certificates are provided in Appendix B.

Table 3.1: ATTENDED NOISE MONITORING EQUIPMENT

Model	Serial Number	Calibration Due Date
Rion NA-28 sound level meter	3013882	05/02/2021
Pulsar 105 acoustic calibrator	78226	11/03/2022

4 RESULTS

4.1 Total Measured Noise Levels

Overall noise levels measured at each location during attended measurements are provided in Table 4.1.

Table 4.1: MEASURED NOISE LEVELS – QUARTER 4 2020¹

Location	Start Date and Time	L _{Amax} dB	L _{A1} dB	L _{A10} dB	L _{Aeq} dB	L _{A50} dB	L _{A90} dB	L _{Amin} dB
NM1	13/01/2021 14:56	73	61	54	51	49	45	43
NM2	13/01/2021 15:19	66	62	58	53	49	44	41
NM3	13/01/2021 14:07	68	56	41	43	36	32	29
NM4	13/01/2021 14:33	67	51	44	44	40	37	35

Notes:

1. Levels in this table are not necessarily the result of activity at Borg.

4.2 Modifying Factors

Measured site-only levels were assessed for the applicability of modifying factors in accordance with the NPfI and methodology described in Section 3.3.

There were no modifying factors, as defined in the NPfI, applicable during the survey.

4.3 Attended Noise Monitoring

Table 4.2 compares measured LAeq,15minute levels from Borg with the project specific noise criteria.

Location	Start Date and Time	Wind Speed m/s	Stability Class	Criterion dB	Criterion Applies? ¹	Borg LAeq,15min dB²	Exceedance ^{3,4}
NM1	13/01/2021 14:56	3.7	А	55	No	46	NA
NM2	13/01/2021 15:19	3.5	В	55	No	NM	NA
NM3	13/01/2021 14:07	3.2	А	55	No	<25	NA
NM4	13/01/2021 14:33	4.0	В	55	No	36	NA

Table 4.2: LAea,15minute GENERATED BY BORG AGAINST CRITERIA – QUARTER 4 2020

Notes:

1. Noise criteria apply under all meteorological conditions except those detailed in Section 2.5;

2. Site-only LAeq, 15minute attributed to Borg, including modifying factors if applicable;

3. Bold results in red indicate exceedance of criterion (if applicable); and

4. NA in exceedance column means atmospheric conditions outside conditions specified, therefore criterion was not applicable.

4.4 Atmospheric Conditions

Atmospheric condition data measured by the operator during each measurement using a Kestrel hand-held weather meter is shown in Table 4.3. The wind speed, direction and temperature were measured at approximately 1.8 metres. Attended noise monitoring is not undertaken during rain, hail, or wind speeds above 5 m/s at microphone height.

Table 4.3: MEASURED ATMOSPHERIC CONDITIONS – QUARTER 4 2020

Location	Start Date and Time	Temperature ° C	Wind Speed m/s	Wind Direction ^o Magnetic North ¹	Cloud Cover 1/8s
NM1	13/01/2021 14:56	29	1.7	85	1
NM2	13/01/2021 15:19	30	0.5	30	3
NM3	13/01/2021 14:07	27	1.0	60	3
NM4	13/01/2021 14:33	27	3.8	20	2

Notes:

1. "-" indicates calm conditions at monitoring location.

Meteorological data used for compliance assessment is sourced from the Borg AWS.

5 SUMMARY

Global Acoustics was engaged by Borg Manufacturing Pty Ltd to conduct a noise survey of operations and construction at the Borg panel manufacturing facility (Borg) near Oberon, NSW. The purpose of the survey was to quantify and describe the acoustic environment around the site and compare results with specified limits.

Attended environmental noise monitoring described in this report was undertaken during the day period of 13 Janurary 2021 at four monitoring locations around Borg. Due to unscheduled shut downs and sustained periods of inclement weather including elevated winds andrainfall, Q4 monitoring scheduled for Q4 2020 was delayed until 13 Janurary 2021.

Borg operations complied with the relevant criteria during the Quarter 4 2020 survey at all monitoring locations. Criteria may not always be applicable due to meteorological conditions at the time of monitoring.

Global Acoustics Pty Ltd

APPENDIX

A REGULATOR DOCUMENTS

A.1 DEVELOPMENT CONSENT SSD 7016

NOISE

Hours of Work

B13. The Applicant must comply with the hours detailed in **Table 1**, unless otherwise agreed in writing by the Secretary.

Table 1: Hours of Work

Activity	Day	Time
Earthworks and Construction	Monday – Friday Saturday	7 am to 7 pm 8 am to 1 pm
Operation	Monday – Sunday	24 hours

- B14. Works outside of the hours identified in Condition B13 may be undertaken in the following circumstances:
 - (a) works that are inaudible at the nearest sensitive receivers;
 - (b) works agreed to in writing by the Secretary;
 - (c) for the delivery of materials required outside these hours by the NSW Police Force or other authorities for safety reasons; or
 - (d) where it is required in an emergency to avoid the loss of lives, property and/or to prevent environmental harm.

Construction Noise Management Plan

- B15. The Applicant must prepare a Construction Noise Management Plan (CNMP) for the Project to manage construction noise. The plan must form part of the CEMP required by Condition C1 and must:
 - (a) be prepared by a suitably qualified and experienced noise expert;
 - (b) be approved by the Secretary prior to the commencement of construction of the Project;
 - (c) describe procedures for achieving the noise limits in Table 2;
 - (d) describe the measures to be implemented to manage noisy works such as rock/concrete breaking activities, in close proximity to sensitive receivers;
 - (e) include strategies that have been developed with the community for managing noisy works;
 - (f) describe the community consultation undertaken to develop the strategies in e) above; and
 - (g) include a complaints management system that would be implemented for the duration of the Project.

Operational Noise Limits

B16. The Applicant must ensure that noise generated by the Development does not exceed the noise limits in **Table 2**.

Table 2: Noise Limits dB(A)

Location	Day	Evening	Night
	LAeq(15 minute)	LAeq(15 minute)	LAeq(15 minute)
All sensitive receivers	55	50	45

Note: Noise generated by the Development is to be measured in accordance with the relevant procedures and exemptions (including certain meteorological conditions) of the NSW Industrial Noise Policy.

Noise Mitigation

B17. The Applicant must ensure all noise attenuation measures already installed for the Existing Development are maintained in good working order for the life of the Development.

Operational Noise Management Plan

- B18. Within 6 months of the date of this consent, the Applicant must prepare an Operational Noise Management Plan (ONMP) for the Existing Development, to manage operational noise to the satisfaction of the Secretary. The ONMP must form part of the OEMP required by Condition C4 and be prepared in accordance with Condition C9. The ONMP must:
 - (a) be prepared by a suitably qualified and experienced noise expert;
 - (b) describe the measures that will be implemented to minimise noise from the Existing Development including:
 - (i) all reasonable and feasible measures being employed on site;
 - (ii) maintain equipment to ensure it is in good order;
 - (iii) traffic noise is effectively managed;
 - (iv) the noise impacts of the Existing Development are minimised during any meteorological conditions when the noise criteria in this consent do not apply;
 - (v) compliance with the relevant conditions of this consent;
 - (c) includes a noise monitoring program that:
 - (i) must be carried out until otherwise agreed to in writing by the Secretary;
 - (ii) is capable of evaluating the performance of the Existing Development; and
 - (iii) includes a protocol for determining exceedances of the relevant conditions of this consent and responding to complaints; and
 - (d) include a procedure for implementing noise mitigation measures, should the Applicant be directed by the EPA or the Secretary, or should non-compliances be detected.
- B19. Prior to the commencement of operation of the Project, the Applicant must update the ONMP required under Condition B18, to incorporate the Project and its management, to the satisfaction of the Secretary. The updated plan must be prepared in accordance with the requirements of Condition B18, and must incorporate the following:
 - (a) description of the noise monitoring program to measure the performance of the Development against this consent and the EPL; and
 - (b) description of any additional measures that would be implemented for the Development to ensure compliance with the noise limits in Condition B16 and the EPL.
 - (c) details of the noise attenuation measures for the gas turbine and ancillary equipment associated with the particleboard material handling area.
- (d) details of the noise attenuation measures for the materials handling equipment approved for installation and operation under SSD-7016-Mod-3.

Noise Verification

- B20. Within 3 months of commencement of operation of the Project, the Applicant must undertake a noise verification study for the Development to the satisfaction of the Secretary. The study must:
 - (a) be undertaken by a suitably qualified expert;
 - (b) include an analysis of compliance with noise limits specified in Condition B16;
 - demonstrate achievement of the sound power levels in Table 12 of the Borg Panels Timber Panel Processing Facility Noise and Vibration Impact Assessment, dated May 2016 and prepared by Global Acoustics;
 - (d) include an outline of management actions to be taken to address any exceedances of the limits specified in Condition B16; and
 - (e) describe the contingency measures in the event management actions are not effective in reducing noise levels to an acceptable level.

Within 1 month of completing the study, the Applicant must submit a report outlining the findings of the study to the Secretary and the EPA.

- B20A. Within three months of the commissioning of the gas turbines and ancillary equipment, the Applicant must undertake a noise verification study for the Development to the satisfaction of the Secretary. The study must:
 - (a) be undertaken by a suitably qualified expert; and
 - (b) include an analysis of compliance with noise limits specified in Condition B16;
 - (c) include an outline of management actions to be taken to address any exceedances of the limits specified in Condition B16; and
 - (d) describe the contingency measures in the event management actions are not effective in reducing noise levels to an acceptable level.

- B20B Within three months of commissioning the materials handling equipment approved for installation and operation under SSD-7016-Mod-3, the Applicant must undertake a Noise Verification Study for the Development to the satisfaction of the Secretary. The Study must:
 - (a) be undertaken by a suitably qualified expert;
 - (b) include an analysis of compliance with noise limits specified in Condition B16;
 - (c) include an outline of management actions to be taken to address any exceedances of the limits specified in Condition B16; and
 - (d) describe the contingency measures in the event management actions are not effective in reducing noise levels to an acceptable level.
- B21. Should the noise verification study indicate the Development has not complied with the noise limits in Condition B16 and applicable EPL requirements, or where the verification indicates that greater impacts than predicted in the EIS may arise, a detailed investigation and an outline of any management measures necessary to prevent exceedances must be submitted to the Secretary and the EPA, as part of the study.
- B26. Within 3 months of commissioning the two cogeneration units, the Applicant, in consultation with the EPA, must undertake post-commissioning noise monitoring of the cogeneration units to demonstrate the operation of the cogeneration units do not exceed the noise criteria at sensitive receivers as described in Section 7.0 of *Gas Fire Co-generators Noise Impact Assessment* prepared by Vipac Engineers and Scientists, dated 2 July 2015.

Within 1 month of completing the study, the Applicant must submit a report outlining the findings of the study to the Secretary and the EPA.

B27. Should the post-commissioning emissions verification study indicate the two cogeneration units have not demonstrated compliance with the NIA, a detailed investigation and an outline of any management measures necessary to prevent exceedances must be submitted to the Secretary and the EPA, as part of the study.

Noise

Attenuation, as detailed in the NIA, will be implemented as follows:

- Conti 1 Dryer Fan air intake redesigned and the fan speed reduced to minimise noise generated. A sound power
 reduction from LAeq 121 dB to 114 dB or better is required.
- Booster fan will receive additional insulation and a reduction in fan speed. A sound power reduction from LAeq 116 dB to 109 dB or better is required.
- Main fibre transport fan will have a concrete enclosure constructed around it. A sound power reduction from LAeq 110 dB to 104 dB or better is required.

In short, the approach taken by Borg to mitigate noise is based on a number of factors:

- Continuation of the use of mobile chippers (that is, not to enclose the mobile chippers). However, these are backup items (only to be used when enclosed, electric chippers are not operational), and will not be used in enhancing met conditions.
- Implementation of additional noise mitigation measures to minimise noise generated by equipment, as detailed above.
- 3. Provision of sound attenuation structures and enclosures to other equipment where appropriate.

Irrespective of the above, Borg undertakes to meet the existing plant sound power reductions specified in the NIA. If the proposed attenuation measures to the existing plant are found to be insufficient in achieving these reductions, additional works will be undertaken.

A.2 ENVIRONMENT PROTECTION LICENCE

L4 Noise limits

- L4.1 Noise from the premises must not exceed:
 - a) 55 dB(A) $L_{Aeq(15 minute)}$ during the day (7am to 6pm); and
 - b) 50 dB(A) $L_{Aeq(15 minute)}$ during the evening (6pm to 10pm); and
 - c) at all other times 45 dB(A) $L_{Aeq (15 minute)}$, except as expressly provided by this licence.

Where LAeq means the equivalent continuous noise level – the level of noise equivalent to the energy-average of noise levels occurring over a measurement period.

- L4.2 To determine compliance with condition L4.1, noise must be measured at or computed for Oberon High School or any other noise sensitive locations (such as a residence/school). A modifying factor correction must be applied for tonal, impulsive or intermittent noise in accordance with the "NSW Industrial Noise Policy (EPA, January 2000)".
- L4.3 The noise limits set out in condition L4.1 apply under all meteorological conditions except for the

following:

- a) Wind speeds greater than 3 metres/second at 10 metres above ground level; or
- b) Stability category F temperature inversion conditions and wind speeds greater than 2 metres/second at 10 metres above ground level; or
- c) Stability category G temperature inversion conditions.
- L4.4 For the purpose of condition L4.3:

a) Data recorded by the meteorological station identified as EPA Licence Point 26 must be used to determine meteorological conditions; and

b) Temperature inversion conditions (stability category) are to be determined by the sigma-theta method referred to in Part E4 of Appendix E to the NSW Industrial Noise Policy.

M7 Other monitoring and recording conditions

M7.1 Noise monitoring to determine compliance with condition L4 must be carried out at least once annually during the day, evening, and night time hours specified by L4.1 at the location(s) specified under condition L4.2 or at the nearest residence, and be undertaken in accordance with Australian Standard AS 2659.1 (1998) Guide to use of sound measuring equipment - portable sound level meters, and the compliance monitoring guidance provided in the NSW Industrial Noise Policy.

A.3 OPERATIONAL NOISE MANAGEMENT PLAN

7.3 Attended Noise Monitoring

Attended noise monitoring is preferred to the use of noise loggers when determining compliance with prescribed limits as it allows the most accurate determination of the contribution, if any, to measured noise levels by the source of interest.

Operational noise impacts are potentially greatest at night when background levels are typically low and the allowable levels are correspondingly low, and, this is the period when noise propagation enhancement is most likely.

7.3.1 Compliance Monitoring

It is proposed to conduct compliance monitoring for the Existing Development at each location once per year during the day, evening and night periods (pending weather and operational constraints) with results compared to noise criteria in **Table 3**. Compliance monitoring should be conducted during the winter period as this season represents the likely worst-case season due to temperature inversions.

Any exceedance of a noise criterion recorded during regular attended noise monitoring is to be investigated. The acoustic consultant undertaking the attended monitoring is to contact the Environment Officer as soon as practicable to advise of the recorded results. If exceedance of limits is demonstrated follow-up monitoring is to be undertaken within one week of the exceedance. The regular monitoring frequency will be resumed if no further exceedances are measured.

Attended compliance monitoring is to be undertaken by a suitably qualified noise expert. Appropriate techniques should be applied to determine noise contributions from the Existing Development in isolation (in the absence of all extraneous noise sources). These techniques could include, but are not limited to:

- Pausing the sound level meter during extraneous noise events, for example, when a
 dog is barking or road traffic noise is clearly audible and affecting the measurements;
- Using frequency filtering techniques where certain frequencies of noise are excluded from the measurements; or
- Using other noise descriptors such as LA90 or LA50 to filter extraneous noise events.

The Existing Development should be fully operational at the time of monitoring.

Operational noise performance is reported as detailed in Section 9.

7.4 Monitoring Locations

Four representative locations have been chosen for monitoring as summarised in Table 6. Refer to Figure 2 for these locations.

Location ID	Monitoring Location
NM1	Oberon Caravan Park
NM2	Intersection Pine Street and Herborn Street
NM3	127 Hazelgrove Road
NM4	Intersection Tasman Street and Earl Street

Table 6 - Noise Monitoring Locations

Noise management levels for each monitoring location are provided in **Table 3**. Where these are exceeded from operational noise sources, the exceedance should be investigated (as discussed in **Section 9**) to determine the cause and any necessary mitigation.

7.5 Meteorological Conditions

Monitoring should be undertaken on days of light winds (<5 m/s) and no rain. Wind speed is to be monitored using a hand held wind speed monitor. Rain and too much wind will elevate the noise level. If there is no choice but to monitor in inclement weather, note the conditions.

Meteorological data is obtained from the Borg Panels weather station (EPA Identification Point 26). This data allows correlation of atmospheric parameters and measured noise levels. Atmospheric condition measurement at ground level is also undertaken during attended monitoring.

10 ONMP Review

In accordance with Development Consent SSD 7016 Condition C10, this ONMP will be reviewed and if necessary revised within 3 months of an:

- Approval of a modification;
- Submission of an incident report under Condition C13;
- Approval of an Annual Review under Condition C11; or
- Completion of an audit under Condition C15.

Revisions to the ONMP will be submitted to the Secretary DP&E for approval.

A.4 CONSTRUCTION NOISE MANAGEMENT PLAN

5 Construction Noise Management Levels

Construction activities will be undertaken simultaneously with regular operation of the existing site. Borg propose to generally restrict site noise emission from both construction and operational tasks combined to comply with operational noise criteria conditioned in Development Consent SSD 7016 and EPL 3035.

Following consideration of the ICNG (Section 2.6), Development Consent (SSD 7016) conditions (Section 2.2), EPL 3035 (Section 2.4) and the measured background noise levels (refer Global Acoustics, May 2016), Table 6 summarises the Noise Management Levels (NMLs) for all residential receivers.

Location	Activity	Day (7am-6pm)	Evening (6pm-10pm)	Night (10pm-7am)
		LAeq (15 min)	LAeq (15 min)	LAeq (15 min)
All residential receivers	General Construction	55	50	45
	Rock/ Concrete Breaking	75		

Table 6 – Operation and Construction Noise Management Levels

Work outside approved construction hours are not expected, however unforeseen constraints relating to delivery of materials or equipment, or other technical requirements, may see some activities undertaken outside approved hours. Where required, out of hours works will be undertaken to meet the noise management levels in **Table 6**.

Development Consent SSD 7016 Condition B14 requires non-standard construction hour work to be inaudible at the nearest sensitive receivers. The Development Consent takes precedence over the ICNG and will be adopted in this plan.

In this instance, "inaudible" means the activity is not discernible from general operation activities.

7.2 Monitoring Frequency

7.2.1 Compliance Monitoring

The following compliance monitoring, to be undertaken during construction by a suitably qualified noise expert, is recommended for the project:

- Periodic attended noise monitoring at the potentially most affected residences during the day period, with a frequency of once per quarter, during the construction phase of the Project; and
- If exceedance of limits is demonstrated, additional mitigation controls are to be implemented, and follow-up monitoring undertaken within one week of the exceedance.

Construction noise performance is reported as detailed in Section 10.

7.3 Monitoring Locations

Four representative locations have been chosen for monitoring as summarised in **Table 8**. Refer to **Figure 2** for these locations.

Location ID	Monitoring Location
NM1	Oberon Caravan Park
NM2	Intersection Pine Street and Herborn Street
NM3	127 Hazelgrove Road
NM4	Intersection Tasman Street and Earl Street

Table 8 – Noise Monitoring Locations

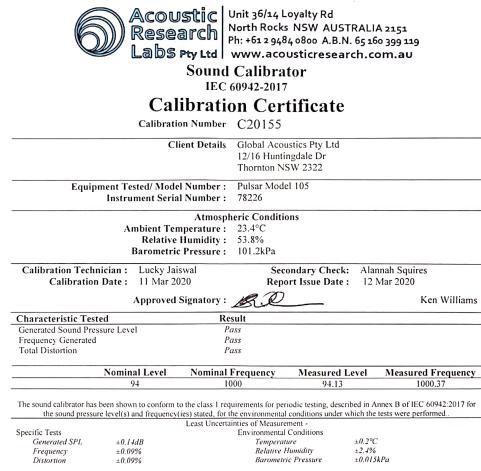
Noise management levels for each monitoring location are provided in **Table 6**. Where these are exceeded by construction-related noise sources, the exceedance should be investigated (as discussed in **Section 10**) to determine the cause and any necessary mitigation.

7.3.2 Weather Conditions

Monitoring should be undertaken on days of light winds (<5 m/s) and no rain. Wind speed is to be monitored using a hand held wind speed monitor. Rain and too much wind will elevate the noise level. If there is no choice but to monitor in inclement weather, note the conditions on the field sheet.

NMLs listed in Table 6 apply under all meteorological conditions except for the following:

- · Wind speeds greater than 3 metres/second at 10 metres above ground level; or
- Stability category F temperature inversion conditions and wind speeds greater than 2 metres/second at 10 metres above ground level; or
- Stability category G temperature inversion conditions.


Weather conditions measured at the site weather station should be used to determine applicability of meteorological exclusion rules.

APPENDIX

B CALIBRATION CERTIFICATES

6	Acoustic Research Labs ry Ltd	Level 7 Building 2 423 Pennant Hill Pennant Hills NSW AUSTRALIA Ph: +61 2 9484 0800 A.B.N. 65 160 399 www.acousticresearch.com.	2120
		Level Meter 61672-3.2013	
	Calibrat	ion Certificate	
	Calibration Number	r C19073	
	Client Detail	Global Acoustics Pty Ltd 12/16 Huntingdale Drive Thornton NSW 2322	
	nent Tested/ Model Number Instrument Serial Number Microphone Serial Number Yre-amplifier Serial Number	30131882 04739	
Ambient Ten	mospheric Conditions operature : 24.5°C	Post-Test Atmospheric Con Ambient Temperature	
	Pressure : 99_39kPa	Relative Humidity Barometric Pressure	
	ician : Charlie Neil Date : 5 Ecb 2019	Secondary Check: Lewis Boo Report Issue Date : 6 Feb 201	
	Approved Signatory :	De	Ken William
14: Frequency and time 15: Long Term Stability 16: Level linearity on the The sound level meter sul As public evidence was performed to accordance	weightings at 1 kHz is reference level range mitted for testing has successfully con conditions under v available, from un independent testing with BC 01672-22013, to demonrate	Pass 17: Level linearity incl. the level range Pass 18: Toneburst response Pass 19: C Weighted Peak Sound Level Pass 20: Overload Indication Pass 21: High Level Stability upleted the class 1 periodic tests of IEC 61672-3-2013, thich the teats were performed. organization responsible for approving the results of patternets of IEC 61672-10 (1996)	Pass Pass Pass Pass for the environmenta for the environmenta
		ainties of Measurement -	
Acoustic Tests 31.5 If: to 8kH;	+0.13dB	Environmental Conditions Temperature =0.2°C	
12.5kHz 15kHz	40.2dB ±0.29dB	Relative Humidity 62.43% Bariametric Pressure 69.015kPa	
Filesensisted Theorem	+0,11,00	and a second a	
Electrical Tests 31.5 Hz to 20 kHz	All association are directed as the t	5% comfidence level with a coverage factor of 2.	
	and the second second second second second		
		ad by continuous work doo to be address to one	
31.3 Hz to 20 kHz	This calibration certificate is to be re-	ad in conjunction with the calibration test report. ATA Ascendited Laboratory Number 14172. IEC 17025 - calibration.	
	This calibration certificate is to be re Acoustic Research Labs Pty Ltd is N Accordited for compliance with ISO	ATA Acceedited Laboratory Number 14172	cable to
31.5 Hz to 20 kHz	This calibration certificate is to be re Acoustic Research Labs Pty Ltd is N Accendited for compliance with ISO The results of the tests, calibrationa / Australian/hational standards. NATA is a signatory to the ILAC M	ATA Ascredited Laboratory Number 14172 IEC 17025 - calibration.	

All uncertainties are derived at the 95% confidence level with a coverage factor of 2.

* The tests <1000 kHz are not covered by Acoustic Research Labs Pty Ltd NATA accreditation.

This calibration certificate is to be read in conjunction with the calibration test report

Acoustic Research Labs Pty Ltd is NATA Accredited Laboratory Number 14172. Accredited for compliance with ISO/IEC 17025 - calibration.

The results of the tests, calibrations and/or measurements included in this document are traceable to SI units.

NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

PAGE 1 OF 1

Scanned with CamScanner

Borg Panels Facility

Environmental Noise Monitoring Quarter 1 2021

Prepared for Borg Manufacturing Pty Ltd

Noise and Vibration Analysis and Solutions

Global Acoustics Pty Ltd PO Box 3115 | Thornton NSW 2322 Telephone +61 2 4966 4333 Email global@globalacoustics.com.au ABN 94 094 985 734

Borg Panels Facility

Environmental Noise Monitoring Quarter 1 2021

Reference: 21013_R01 Report date: 31 March 2021

Prepared for

Borg Manufacturing Pty Ltd 124 Lowes Mount Road Oberon 2787 NSW

Prepared by

Global Acoustics Pty Ltd PO Box 3115 Thornton NSW 2322

asmus

Jene hilly

Prepared:

Jonathan Erasmus Consultant

QA Review: Jesse Tribby

Consultant

Global Acoustics Pty Ltd ~ Environmental noise modelling and impact assessment ~ Sound power testing ~ Noise control advice ~ Noise and vibration monitoring ~ OHS noise monitoring and advice ~ Expert evidence in Land and Environment and Compensation Courts ~ Architectural acoustics ~ Blasting assessments and monitoring ~ Noise management plans (NMP) ~ Sound level meter and noise logger sales and hire

Table of Contents

1 INTRODUCTION	iii
1.1 Background	iii
1.2 Monitoring Locations	
1.3 Terminology & Abbreviations	5
2 REGULATOR REQUIREMENTS AND NOISE CRITERIA	6
2.1 Development Consent	
2.2 Environment Protection Licence	6
2.3 Operational Noise Management Plan	6
2.4 Noise Criteria	6
2.5 Meteorological Conditions	7
2.6 Modifying Factors	7
3 METHODOLOGY	8
3.1 Overview	
3.2 Attended Noise Monitoring	8
3.3 Modifying Factors	9
3.4 Monitoring Equipment	9
4 RESULTS	
4.1 Total Measured Noise Levels	
4.2 Modifying Factors	
4.3 Attended Noise Monitoring	11
4.4 Atmospheric Conditions	11
5 SUMMARY	

Appendices

A	REGULATOR DOCUMENTS	.13
B	CALIBRATION CERTIFICATES	.22

1 INTRODUCTION

1.1 Background

Global Acoustics was engaged by Borg Manufacturing Pty Ltd to conduct a noise survey of operations and construction at the Borg panel manufacturing facility (Borg) near Oberon, NSW. The purpose of the survey was to quantify and describe the acoustic environment around the site and compare results with specified limits.

Attended environmental noise monitoring described in this report was undertaken during the day period of 3 March 2021 at four monitoring locations around Borg.

1.2 Monitoring Locations

Monitoring locations are detailed in Table 1.1 and shown in Figure 1. It should be noted that Figure 1 shows the actual monitoring position, not the location of residences.

Report DescriptorMonitoring LocationNM1Oberon Caravan ParkNM2Intersection of Pine Street and Herborn StreetNM3127 Hazelgrove RoadNM4Intersection of Tasman Street and Earl Street

Table 1.1: ATTENDED MONITORING LOCATIONS

Figure 1: Attended Noise Monitoring Locations

Global Acoustics Pty Ltd | PO Box 3115 | Thornton NSW 2322 Telephone +61 2 4966 4333 | Email global@globalacoustics.com.au ABN 94 094 985 734

1.3 Terminology & Abbreviations

Some definitions of terms and abbreviations which may be used in this report are provided in Table 1.2.

Table 1.2: TERMINOLOGY & ABBREVIATIONS

Descriptor	Definition
dB(A)	Noise level measurement units are decibels (dB). The "A" weighting scale is used to describe human response to noise.
L _{Amax}	The maximum A-weighted noise level over a time period.
L _{A1}	The noise level which is exceeded for 1 per cent of the time.
LA1,1minute	The noise level which is exceeded for 1 per cent of the specified time period of 1 minute.
LA10	The noise level which is exceeded for 10 percent of the time.
L _{Aeq}	The average noise A-weighted energy during a measurement period.
L _{A50}	The noise level which is exceeded for 50 per cent of the time and the median noise level during a measurement period.
LA90	The level exceeded for 90 percent of the time. The LA90 level is often referred to as the "background" noise level and is commonly used to determine noise criteria for assessment purposes.
L _{Amin}	The minimum A-weighted noise level over a time period.
L _{Ceq}	The average C-weighted noise energy during a measurement period. The "C" weighting scale is used to take into account low-frequency components of noise within the audibility range of humans.
SPL	Sound pressure level. Fluctuations in pressure measured as 10 times a logarithmic scale, with the reference pressure being 20 micropascals.
Hertz (Hz)	The frequency of fluctuations in pressure, measured in cycles per second. Most sounds are a combination of many frequencies together.
AWS	Automatic weather station used to collect meteorological data, typically at an altitude of 10 metres
VTG	Vertical temperature gradient in degrees Celsius per 100 metres altitude.
Sigma-theta	The standard deviation of the horizontal wind direction over a period of time.
SC	Stability class (or category) is determined from measured wind speed and either sigma-theta or VTG.
IA	Inaudible. When site noise is noted as IA then there was no site noise at the monitoring location.
NM	Not Measurable. If site noise is noted as NM, this means some noise was audible but could not be quantified.
Day	This is the period 7:00am to 6:00pm.
Evening	This is the period 6:00pm to 10:00pm.
Night	This is the period 10:00pm to 7:00am.

2 REGULATOR REQUIREMENTS AND NOISE CRITERIA

2.1 Development Consent

The most current development consent associated with activities at Borg is Development Consent SSD 7016 (the consent), most recently modified 22 May 2020. The sections of the consent relating to noise are reproduced in Appendix A.

2.2 Environment Protection Licence

Borg holds Environment Protection Licence (EPL) No. 3035 issued by the Environment Protection Authority (EPA), most recently on 4 September 2019. Relevant sections of the EPL are reproduced in Appendix A.

2.3 Operational Noise Management Plan

Noise monitoring requirements are detailed in the Borg Operational Noise Management Plan (ONMP) and Construction Noise Management Plan (CNMP). The most recent version of the ONMP was approved in October 2020. The most recent version of the CNMP was approved in June 2017. Relevant sections of the ONMP and CNMP are reproduced in Appendix A.

2.4 Noise Criteria

Noise limits are consistent between the consent and EPL and have been reproduced in Table 2.1 below.

Table 2.1: IMPACT ASSESSMENT CRITERIA

Location	Day LAeq,15minute dB	Evening LAeq,15minute dB	Night LAeq,15minute dB
All sensitive receivers	55	50	45

Construction noise criteria for each monitoring location are detailed in Table 2.2 and Table 2.3.

Table 2.2: GENERAL CONSTRUCTION NOISE LIMITS

Report Descriptor	Day LAeq,15minute dB	Evening LAeq,15minute dB	Night LAeq,15minute dB
NM1	55	50	45
NM2	55	50	45
NM3	55	50	45
NM4	55	50	45

Report Descriptor	Day LAeq,15minute dB	
NM1	75	
NM2	75	
NM3	75	
NM4	75	

Table 2.3: ROCK/CONCRETE BREAKING NOISE LIMITS

2.5 Meteorological Conditions

As described in the consent, noise generated by Borg is to be measured in accordance with the relevant procedures and exemptions (including certain meteorological conditions) of the NSW Industrial Noise Policy (INP), as follows:

- during rain and wind speeds greater than 3 metres/second at 10 metres above ground level; or
- stability category F temperature inversion conditions and wind speeds greater than 2 metres/second at 10 metres above ground level; or
- stability category G temperature inversion conditions.

2.6 Modifying Factors

The EPA 'Noise Policy for Industry' (NPfI, 2017) was approved for use in NSW in October 2017. For assessment of modifying factors, the NPfI immediately superseded the 'Industrial Noise Policy' (INP, 2000), as outlined in the EPA document 'Implementation and transitional arrangements for the Noise Policy for Industry' (2017). Assessment and reporting of modifying factors has been undertaken in accordance with Fact Sheet C of the NPfI.

3 METHODOLOGY

3.1 Overview

Attended environmental noise monitoring was conducted in general accordance with Australian Standard AS1055 'Acoustics, Description and Measurement of Environmental Noise', relevant NSW EPA requirements, and the Borg ONMP and CNMP. Meteorological data was obtained from the Borg automatic weather station (AWS) which allowed correlation of atmospheric parameters with measured noise levels.

3.2 Attended Noise Monitoring

During this survey, attended monitoring was undertaken during the day period at each location. The duration of each measurement was 15 minutes. Atmospheric condition measurement was also undertaken at each monitoring location.

This survey presents noise levels gathered during attended monitoring that are the result of many sounds reaching the sound level meter microphone during monitoring. Received levels from various noise sources were noted during attended monitoring and particular attention was paid to the extent of Borg's contribution, if any, to measured levels. At each receptor location, Borg's $L_{Aeq,15minute}$ and $L_{A1,1minute}$ (in the absence of any other noise) was measured directly, where possible, or, determined by frequency analysis.

If the exact contribution of the source of interest (in this case Borg) cannot be established, due to masking by other noise sources in a similar frequency range, but site noise levels are observed to be well below (more than 5 dB lower than) any relevant criterion, a maximum estimate of the potential contribution of the site might be made based on other measured site-only noise descriptors in accordance with Section 7.1 of the NPfI. This is generally expressed as a 'less than' quantity, such as <20 dB or <30 dB.

The terms 'Inaudible' (IA) or 'Not Measurable' (NM) may also be used in this report. When site noise is noted as IA, no site noise was audible at the monitoring location. When site noise is noted as NM, this means some noise was audible but could not be quantified. If site noise was NM due to masking but estimated to be significant in relation to a relevant criterion, we would employ methods (e.g. measure closer and back calculate) to determine a value for reporting.

All sites noted as NM in this report are due to one or more of the following reasons:

- Site noise levels were extremely low and unlikely, in many cases, to be even noticed;
- Site noise levels were masked by another relatively loud noise source that is characteristic of the environment (e.g. breeze in foliage or continuous road traffic noise) that cannot be eliminated by moving closer; and/or
- It was not feasible, nor reasonable to employ methods such as move closer and back calculate. Cases may include, but are not limited to, rough terrain preventing closer measurement, addition/removal of significant source to receiver shielding caused by moving closer, and meteorological conditions where back calculation may not be accurate.

A measurement of $L_{A1,1minute}$ corresponds to the highest noise level generated for 0.6 second during one minute. In practical terms this is the highest noise level, or L_{Amax} , received from the site during the entire measurement period (i.e. the highest level of the worst minute during the 15 minute measurement).

Often extraneous noise events (for example, road traffic pass-bys and dogs) interfere with the measurement of site noise levels in the frequency range of interest. Where required, the sound level meter is paused during these occurrences to aid in quantification of the site only $L_{Aeq,15minute}$ level.

3.3 Modifying Factors

All measurements were evaluated for potential modifying factors in accordance with the NPfI. Specific methodology for assessment of each modifying factor is outlined in Fact Sheet C of the NPfI.

Assessment of modifying factors is undertaken at the time of measurement if the site was audible and directly quantifiable, such that the site-only L_{Aeq} was not "NM" or less than a maximum cut off value (e.g. "<20 dB" or "<30dB").

If applicable, modifying factors have been reported and added to measured site-only L_{Aeq} noise levels when meteorological conditions satisfied requirements for site noise criteria to be applicable. Low-frequency modifying factors have only been applied to site-only L_{Aeq} levels if Borg was the only contributing low-frequency noise source.

3.4 Monitoring Equipment

Table 3.1 lists the equipment used to measure environmental noise levels. Calibration certificates are provided in Appendix B.

Table 3.1: ATTENDED NOISE MONITORING EQUIPMENT

Model	Serial Number	Calibration Due Date
Rion NA-28 sound level meter	30131882	08/02/2023
Pulsar 105 acoustic calibrator	78226	08/02/2023

4 RESULTS

4.1 Total Measured Noise Levels

Overall noise levels measured at each location during attended measurements are provided in Table 4.1.

Table 4.1: MEASURED NOISE LEVELS – QUARTER 1 2021

Location	Start Date and Time	L _{Amax} dB	L _{A1} dB	L _{A10} dB	L _{Aeq} dB	L _{A50} dB	L _{A90} dB	L _{Amin} dB
NM1	03/03/2021 14:28	65	56	50	48	46	43	40
NM2	03/03/2021 14:48	68	55	48	46	45	43	40
NM3	03/03/2021 13:45	56	45	41	40	40	38	35
NM4	03/03/2021 14:09	56	49	46	44	44	42	40

Notes:

1. Levels in this table are not necessarily the result of activity at Borg.

4.2 Modifying Factors

Measured site-only levels were assessed for the applicability of modifying factors in accordance with the NPfI and methodology described in Section 3.3.

There were no modifying factors, as defined in the NPfI, applicable during the survey.

4.3 Attended Noise Monitoring

Table 4.2 compares measured LAeq,15minute levels from Borg with the project specific noise criteria.

Location	Start Date and Time	Wind Speed m/s	Stability Class	Criterion dB	Criterion Applies? ¹	Borg LAeq,15min dB ²	Exceedance ^{3,4}
NM1	03/03/2021 14:28	2.1	А	55	Yes	43	Nil
NM2	03/03/2021 14:48	2.3	А	55	Yes	IA	Nil
NM3	03/03/2021 13:45	1.6	А	55	Yes	33	Nil
NM4	03/03/2021 14:09	1.6	А	55	Yes	36	Nil

Table 4.2: LAea.15minute GENERATED BY BORG AGAINST CRITERIA – QUARTER 1 2021

Notes:

1. Noise criteria apply under all meteorological conditions except those detailed in Section 2.5;

2. Site-only LAeq, 15minute attributed to Borg, including modifying factors if applicable;

3. Bold results in red indicate exceedance of criterion (if applicable); and

4. NA in exceedance column means atmospheric conditions outside conditions specified, therefore criterion was not applicable.

4.4 Atmospheric Conditions

Atmospheric condition data measured by the operator during each measurement using a Kestrel hand-held weather meter is shown in Table 4.3. The wind speed, direction and temperature were measured at approximately 1.8 metres. Attended noise monitoring is not undertaken during rain, hail, or wind speeds above 5 m/s at microphone height.

Table 4.3: MEASURED ATMOSPHERIC CONDITIONS – QUARTER 1 2021

Location	Start Date and Time	Temperature ° C	Wind Speed m/s	Wind Direction ^o Magnetic North ¹	Cloud Cover 1/8s
NM1	03/03/2021 14:28	22	1.2	360	4
NM2	03/03/2021 14:48	23	0.7	300	5
NM3	03/03/2021 13:45	22	0.0	-	4
NM4	03/03/2021 14:09	21	1.3	270	4

Notes:

1. "-" indicates calm conditions at monitoring location.

Meteorological data used for compliance assessment is sourced from the Borg AWS.

5 SUMMARY

Global Acoustics was engaged by Borg Manufacturing Pty Ltd to conduct a noise survey of operations and construction at the Borg panel manufacturing facility (Borg) near Oberon, NSW. The purpose of the survey was to quantify and describe the acoustic environment around the site and compare results with specified limits.

Attended environmental noise monitoring described in this report was undertaken during the day period of 3 March 2021 at four monitoring locations around Borg.

Borg operations complied with the relevant criteria during the Quarter 1 2021 survey at all monitoring locations. Criteria may not always be applicable due to meteorological conditions at the time of monitoring.

Global Acoustics Pty Ltd

APPENDIX

A **REGULATOR DOCUMENTS**

A.1 DEVELOPMENT CONSENT SSD 7016

NOISE

Hours of Work

B13. The Applicant must comply with the hours detailed in **Table 1**, unless otherwise agreed in writing by the Secretary.

Table 1: Hours of Work

Activity	Day	Time
Earthworks and Construction	Monday – Friday Saturday	7 am to 7 pm 8 am to 1 pm
Operation	Monday – Sunday	24 hours

- B14. Works outside of the hours identified in Condition B13 may be undertaken in the following circumstances:
 - (a) works that are inaudible at the nearest sensitive receivers;
 - (b) works agreed to in writing by the Secretary;
 - (c) for the delivery of materials required outside these hours by the NSW Police Force or other authorities for safety reasons; or
 - (d) where it is required in an emergency to avoid the loss of lives, property and/or to prevent environmental harm.

Construction Noise Management Plan

- B15. The Applicant must prepare a Construction Noise Management Plan (CNMP) for the Project to manage construction noise. The plan must form part of the CEMP required by Condition C1 and must:
 - (a) be prepared by a suitably qualified and experienced noise expert;
 - (b) be approved by the Secretary prior to the commencement of construction of the Project;
 - (c) describe procedures for achieving the noise limits in Table 2;
 - (d) describe the measures to be implemented to manage noisy works such as rock/concrete breaking activities, in close proximity to sensitive receivers;
 - (e) include strategies that have been developed with the community for managing noisy works;
 - (f) describe the community consultation undertaken to develop the strategies in e) above; and
 - (g) include a complaints management system that would be implemented for the duration of the Project.

Operational Noise Limits

B16. The Applicant must ensure that noise generated by the Development does not exceed the noise limits in **Table 2**.

Table 2: Noise Limits dB(A)

Location	Day	Evening	Night
	LAeq(15 minute)	LAeq(15 minute)	LAeq(15 minute)
All sensitive receivers	55	50	45

Note: Noise generated by the Development is to be measured in accordance with the relevant procedures and exemptions (including certain meteorological conditions) of the NSW Industrial Noise Policy.

Noise Mitigation

B17. The Applicant must ensure all noise attenuation measures already installed for the Existing Development are maintained in good working order for the life of the Development.

Operational Noise Management Plan

- B18. Within 6 months of the date of this consent, the Applicant must prepare an Operational Noise Management Plan (ONMP) for the Existing Development, to manage operational noise to the satisfaction of the Secretary. The ONMP must form part of the OEMP required by Condition C4 and be prepared in accordance with Condition C9. The ONMP must:
 - (a) be prepared by a suitably qualified and experienced noise expert;
 - (b) describe the measures that will be implemented to minimise noise from the Existing Development including:
 - (i) all reasonable and feasible measures being employed on site;
 - (ii) maintain equipment to ensure it is in good order;
 - (iii) traffic noise is effectively managed;
 - (iv) the noise impacts of the Existing Development are minimised during any meteorological conditions when the noise criteria in this consent do not apply;
 - (v) compliance with the relevant conditions of this consent;
 - (c) includes a noise monitoring program that:
 - (i) must be carried out until otherwise agreed to in writing by the Secretary;
 - (ii) is capable of evaluating the performance of the Existing Development; and
 - (iii) includes a protocol for determining exceedances of the relevant conditions of this consent and responding to complaints; and
 - (d) include a procedure for implementing noise mitigation measures, should the Applicant be directed by the EPA or the Secretary, or should non-compliances be detected.
- B19. Prior to the commencement of operation of the Project, the Applicant must update the ONMP required under Condition B18, to incorporate the Project and its management, to the satisfaction of the Secretary. The updated plan must be prepared in accordance with the requirements of Condition B18, and must incorporate the following:
 - (a) description of the noise monitoring program to measure the performance of the Development against this consent and the EPL; and
 - (b) description of any additional measures that would be implemented for the Development to ensure compliance with the noise limits in Condition B16 and the EPL.
 - (c) details of the noise attenuation measures for the gas turbine and ancillary equipment associated with the particleboard material handling area.
- (d) details of the noise attenuation measures for the materials handling equipment approved for installation and operation under SSD-7016-Mod-3.

Noise Verification

- B20. Within 3 months of commencement of operation of the Project, the Applicant must undertake a noise verification study for the Development to the satisfaction of the Secretary. The study must:
 - (a) be undertaken by a suitably qualified expert;
 - (b) include an analysis of compliance with noise limits specified in Condition B16;
 - demonstrate achievement of the sound power levels in Table 12 of the Borg Panels Timber Panel Processing Facility Noise and Vibration Impact Assessment, dated May 2016 and prepared by Global Acoustics;
 - (d) include an outline of management actions to be taken to address any exceedances of the limits specified in Condition B16; and
 - (e) describe the contingency measures in the event management actions are not effective in reducing noise levels to an acceptable level.

Within 1 month of completing the study, the Applicant must submit a report outlining the findings of the study to the Secretary and the EPA.

- B20A. Within three months of the commissioning of the gas turbines and ancillary equipment, the Applicant must undertake a noise verification study for the Development to the satisfaction of the Secretary. The study must:
 - (a) be undertaken by a suitably qualified expert; and
 - (b) include an analysis of compliance with noise limits specified in Condition B16;
 - (c) include an outline of management actions to be taken to address any exceedances of the limits specified in Condition B16; and
 - (d) describe the contingency measures in the event management actions are not effective in reducing noise levels to an acceptable level.

- B20B Within three months of commissioning the materials handling equipment approved for installation and operation under SSD-7016-Mod-3, the Applicant must undertake a Noise Verification Study for the Development to the satisfaction of the Secretary. The Study must:
 - (a) be undertaken by a suitably qualified expert;
 - (b) include an analysis of compliance with noise limits specified in Condition B16;
 - (c) include an outline of management actions to be taken to address any exceedances of the limits specified in Condition B16; and
 - (d) describe the contingency measures in the event management actions are not effective in reducing noise levels to an acceptable level.
- B21. Should the noise verification study indicate the Development has not complied with the noise limits in Condition B16 and applicable EPL requirements, or where the verification indicates that greater impacts than predicted in the EIS may arise, a detailed investigation and an outline of any management measures necessary to prevent exceedances must be submitted to the Secretary and the EPA, as part of the study.
- B26. Within 3 months of commissioning the two cogeneration units, the Applicant, in consultation with the EPA, must undertake post-commissioning noise monitoring of the cogeneration units to demonstrate the operation of the cogeneration units do not exceed the noise criteria at sensitive receivers as described in Section 7.0 of *Gas Fire Co-generators Noise Impact Assessment* prepared by Vipac Engineers and Scientists, dated 2 July 2015.

Within 1 month of completing the study, the Applicant must submit a report outlining the findings of the study to the Secretary and the EPA.

B27. Should the post-commissioning emissions verification study indicate the two cogeneration units have not demonstrated compliance with the NIA, a detailed investigation and an outline of any management measures necessary to prevent exceedances must be submitted to the Secretary and the EPA, as part of the study.

Noise

Attenuation, as detailed in the NIA, will be implemented as follows:

- Conti 1 Dryer Fan air intake redesigned and the fan speed reduced to minimise noise generated. A sound power
 reduction from LAeq 121 dB to 114 dB or better is required.
- Booster fan will receive additional insulation and a reduction in fan speed. A sound power reduction from LAeq 116 dB to 109 dB or better is required.
- Main fibre transport fan will have a concrete enclosure constructed around it. A sound power reduction from LAeq 110 dB to 104 dB or better is required.

In short, the approach taken by Borg to mitigate noise is based on a number of factors:

- Continuation of the use of mobile chippers (that is, not to enclose the mobile chippers). However, these are backup items (only to be used when enclosed, electric chippers are not operational), and will not be used in enhancing met conditions.
- Implementation of additional noise mitigation measures to minimise noise generated by equipment, as detailed above.
- 3. Provision of sound attenuation structures and enclosures to other equipment where appropriate.

Irrespective of the above, Borg undertakes to meet the existing plant sound power reductions specified in the NIA. If the proposed attenuation measures to the existing plant are found to be insufficient in achieving these reductions, additional works will be undertaken.

A.2 ENVIRONMENT PROTECTION LICENCE

L4 Noise limits

- L4.1 Noise from the premises must not exceed:
 - a) 55 dB(A) $L_{Aeq(15 minute)}$ during the day (7am to 6pm); and
 - b) 50 dB(A) $L_{Aeq(15 minute)}$ during the evening (6pm to 10pm); and
 - c) at all other times 45 dB(A) $L_{Aeq (15 minute)}$, except as expressly provided by this licence.

Where LAeq means the equivalent continuous noise level – the level of noise equivalent to the energy-average of noise levels occurring over a measurement period.

- L4.2 To determine compliance with condition L4.1, noise must be measured at or computed for Oberon High School or any other noise sensitive locations (such as a residence/school). A modifying factor correction must be applied for tonal, impulsive or intermittent noise in accordance with the "NSW Industrial Noise Policy (EPA, January 2000)".
- L4.3 The noise limits set out in condition L4.1 apply under all meteorological conditions except for the

following:

- a) Wind speeds greater than 3 metres/second at 10 metres above ground level; or
- b) Stability category F temperature inversion conditions and wind speeds greater than 2 metres/second at 10 metres above ground level; or
- c) Stability category G temperature inversion conditions.
- L4.4 For the purpose of condition L4.3:

a) Data recorded by the meteorological station identified as EPA Licence Point 26 must be used to determine meteorological conditions; and

b) Temperature inversion conditions (stability category) are to be determined by the sigma-theta method referred to in Part E4 of Appendix E to the NSW Industrial Noise Policy.

M7 Other monitoring and recording conditions

M7.1 Noise monitoring to determine compliance with condition L4 must be carried out at least once annually during the day, evening, and night time hours specified by L4.1 at the location(s) specified under condition L4.2 or at the nearest residence, and be undertaken in accordance with Australian Standard AS 2659.1 (1998) Guide to use of sound measuring equipment - portable sound level meters, and the compliance monitoring guidance provided in the NSW Industrial Noise Policy.

A.3 OPERATIONAL NOISE MANAGEMENT PLAN

7.3 Attended Noise Monitoring

Attended noise monitoring is preferred to the use of noise loggers when determining compliance with prescribed limits as it allows the most accurate determination of the contribution, if any, to measured noise levels by the source of interest.

Operational noise impacts are potentially greatest at night when background levels are typically low and the allowable levels are correspondingly low, and, this is the period when noise propagation enhancement is most likely.

7.3.1 Compliance Monitoring

It is proposed to conduct compliance monitoring for the Existing Development at each location once per year during the day, evening and night periods (pending weather and operational constraints) with results compared to noise criteria in **Table 3**. Compliance monitoring should be conducted during the winter period as this season represents the likely worst-case season due to temperature inversions.

Any exceedance of a noise criterion recorded during regular attended noise monitoring is to be investigated. The acoustic consultant undertaking the attended monitoring is to contact the Environment Officer as soon as practicable to advise of the recorded results. If exceedance of limits is demonstrated follow-up monitoring is to be undertaken within one week of the exceedance. The regular monitoring frequency will be resumed if no further exceedances are measured.

Attended compliance monitoring is to be undertaken by a suitably qualified noise expert. Appropriate techniques should be applied to determine noise contributions from the Existing Development in isolation (in the absence of all extraneous noise sources). These techniques could include, but are not limited to:

- Pausing the sound level meter during extraneous noise events, for example, when a
 dog is barking or road traffic noise is clearly audible and affecting the measurements;
- Using frequency filtering techniques where certain frequencies of noise are excluded from the measurements; or
- Using other noise descriptors such as LA90 or LA50 to filter extraneous noise events.

The Existing Development should be fully operational at the time of monitoring.

Operational noise performance is reported as detailed in Section 9.

7.4 Monitoring Locations

Four representative locations have been chosen for monitoring as summarised in **Table 6**. Refer to **Figure 2** for these locations.

Location ID	Monitoring Location
NM1	Oberon Caravan Park
NM2	Intersection Pine Street and Herborn Street
NM3	127 Hazelgrove Road
NM4	Intersection Tasman Street and Earl Street

Table 6 – Noise Monitoring Locations

Noise management levels for each monitoring location are provided in **Table 3**. Where these are exceeded from operational noise sources, the exceedance should be investigated (as discussed in **Section 9**) to determine the cause and any necessary mitigation.

7.5 Meteorological Conditions

Monitoring should be undertaken on days of light winds (<5 m/s) and no rain. Wind speed is to be monitored using a hand held wind speed monitor. Rain and too much wind will elevate the noise level. If there is no choice but to monitor in inclement weather, note the conditions.

Meteorological data is obtained from the Borg Panels weather station (EPA Identification Point 26). This data allows correlation of atmospheric parameters and measured noise levels. Atmospheric condition measurement at ground level is also undertaken during attended monitoring.

10 ONMP Review

In accordance with Development Consent SSD 7016 Condition C10, this ONMP will be reviewed and if necessary revised within 3 months of an:

- Approval of a modification;
- Submission of an incident report under Condition C13;
- Approval of an Annual Review under Condition C11; or
- Completion of an audit under Condition C15.

Revisions to the ONMP will be submitted to the Secretary DP&E for approval.

A.4 CONSTRUCTION NOISE MANAGEMENT PLAN

5 Construction Noise Management Levels

Construction activities will be undertaken simultaneously with regular operation of the existing site. Borg propose to generally restrict site noise emission from both construction and operational tasks combined to comply with operational noise criteria conditioned in Development Consent SSD 7016 and EPL 3035.

Following consideration of the ICNG (Section 2.6), Development Consent (SSD 7016) conditions (Section 2.2), EPL 3035 (Section 2.4) and the measured background noise levels (refer Global Acoustics, May 2016), Table 6 summarises the Noise Management Levels (NMLs) for all residential receivers.

Location	Activity	Day (7am-6pm)	Evening (6pm-10pm)	Night (10pm-7am)
		LAeq (15 min)	LAeq (15 min)	LAeq (15 min)
All residential	General Construction	55	50	45
receivers	Rock/ Concrete Breaking	75		

Table 6 – Operation and Construction Noise Management Levels

Work outside approved construction hours are not expected, however unforeseen constraints relating to delivery of materials or equipment, or other technical requirements, may see some activities undertaken outside approved hours. Where required, out of hours works will be undertaken to meet the noise management levels in **Table 6**.

Development Consent SSD 7016 Condition B14 requires non-standard construction hour work to be inaudible at the nearest sensitive receivers. The Development Consent takes precedence over the ICNG and will be adopted in this plan.

In this instance, "inaudible" means the activity is not discernible from general operation activities.

7.2 Monitoring Frequency

7.2.1 Compliance Monitoring

The following compliance monitoring, to be undertaken during construction by a suitably qualified noise expert, is recommended for the project:

- Periodic attended noise monitoring at the potentially most affected residences during the day period, with a frequency of once per quarter, during the construction phase of the Project; and
- If exceedance of limits is demonstrated, additional mitigation controls are to be implemented, and follow-up monitoring undertaken within one week of the exceedance.

Construction noise performance is reported as detailed in Section 10.

7.3 Monitoring Locations

Four representative locations have been chosen for monitoring as summarised in **Table 8**. Refer to **Figure 2** for these locations.

Location ID	Monitoring Location
NM1	Oberon Caravan Park
NM2	Intersection Pine Street and Herborn Street
NM3	127 Hazelgrove Road
NM4	Intersection Tasman Street and Earl Street

Table 8 – Noise Monitoring Locations

Noise management levels for each monitoring location are provided in **Table 6**. Where these are exceeded by construction-related noise sources, the exceedance should be investigated (as discussed in **Section 10**) to determine the cause and any necessary mitigation.

7.3.2 Weather Conditions

Monitoring should be undertaken on days of light winds (<5 m/s) and no rain. Wind speed is to be monitored using a hand held wind speed monitor. Rain and too much wind will elevate the noise level. If there is no choice but to monitor in inclement weather, note the conditions on the field sheet.

NMLs listed in Table 6 apply under all meteorological conditions except for the following:

- · Wind speeds greater than 3 metres/second at 10 metres above ground level; or
- Stability category F temperature inversion conditions and wind speeds greater than 2 metres/second at 10 metres above ground level; or
- Stability category G temperature inversion conditions.

Weather conditions measured at the site weather station should be used to determine applicability of meteorological exclusion rules.

APPENDIX

B CALIBRATION CERTIFICATES

	Acousti Researc Labs Pry L	h Nort	36/14 Loyalty Rd h Rocks NSW AU 61294840800 A.E w.acousticrese	STRALIA 2151 N. 65 160 399 13 arch.com.au	19
			el Meter		
		EC 61672			
			Certificat	e	
	Calibration Nur	nber C ₂	21058		
	Client De	12/	bal Acoustics Pty Lto 16 Huntingdale Drive prnton NSW 2322		
Equ	pment Tested/ Model Num Instrument Serial Num Microphone Serial Num Pre-amplifier Serial Num	ber: 301 ber: 047			
Ambient T Relativ	Atmospheric Conditions emperature : 23.5°C ve Humidity : 46.7% ric Pressure : 100.28kPa		Ambier Rel	mospheric Condi t Temperature : ative Humidity : netric Pressure :	tions 23.3°C 47.7% 100.25kPa
Calibration Tec			Secondary Che		
Calibrati			Report Issue Dat	e: 9 Feb 2021	
	Approved Signat	ory:	allams		Ken Willia
Clause and Char	ests of a frequency weighting	Result Pass	Clause and Char 17: Level linearity in		Rest entrol Pas
13: Electrical Sig. te	sts of frequency weightings	Pass	18: Toneburst respon	se	Pas
14: Frequency and t 15: Long Term Stab	ime weightings at 1 kHz	Pass Pass	 C Weighted Peak Overload Indicat 		Pas Pas
	n the reference level range	Pass _	21: High Level Stabi		Pas
As public evidence v performed in accordate	submitted for testing has successful conditions u vas available, from an independent to nee with IEC 61672-2:2013, to demo :2013, the sound level meter submit	nder which th esting organis onstrate that th	e tests were performed. ation responsible for appro the model of sound level me	ving the results of patter ter fully conformed to t	ern evaluation tes the requirements
	Least		of Measurement -		
Acoustic Tests 125Hz	±0.12dB	Env	ironmental Conditions Temperature	±0.2°C	
1kH= 8kH=	±0.11dB ±0.13dB		Relative Humidity Barometric Pressure	±2.4%	
Electrical Tests	±0.10dB		Darometric r ressure	±0.015kPa	

This calibration certificate is to be read in conjunction with the calibration test report.

Acoustic Research Labs Pty Ltd is NATA Accredited Laboratory Number 14172. Accredited for compliance with ISO/IEC 17025 - calibration.

The results of the tests, calibrations and/or measurements included in this document are traceable to SI units.

NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

PAGE 1 OF 1

14

	Cal	libratio	0942-2017				
		in Number		inicate			
				Dr. L.L.			
		lient Details		ustics Pty Ltd ngdale Drive SW 2322			
Equi	ipment Tested/ Mode Instrument Seria		Pulsar Mode 78226	el 105			
	Ambiant Tar		eric Condition 23.3°C	ons			
			47.7%				
	Barometrie	c Pressure :	100.27kPa				
		121		ondary Check		x Moore	
		Signatory :	Repo	ondary Check ort Issue Date		x Moore eb 2021	Ken Wil
Characteristic Te Generated Sound P	Approved	Signatory : Rest	Repo Bille ult	ort Issue Date			Ken Wil
Characteristic Te	Approved ested ressure Level	Signatory :	Repo Halla ult 55	ort Issue Date			Ken Wil
Characteristic Te Generated Sound P Frequency Generated	Approved ested ressure Level ed Nominal Level	Signatory : Rest Pas Pas Pas Pas	Repo IIII ss ss requency	ort Issue Date	: 9 F	eb 2021	
Characteristic Te Generated Sound P Frequency Generate	Approved ested ressure Level ed	Signatory : Rest Pas Pas Pas	Repo IIII ss ss requency	ort Issue Date	: 9 F	eb 2021	
Characteristic Te Generated Sound P Frequency Generate Total Distortion	Approved ested ressure Level ed Nominal Level 94 as been shown to conform	Signatory : Pas Pas Pas Pas Nominal F 100 to the class 1 requi	Repo	Measured 1 94.02	: 9 F	Measu	red Frequ 1000.40
Characteristic Te Generated Sound P Frequency Generate Total Distortion The sound calibrator h the sound pres	Approved ested ressure Level ed Nominal Level 94	Signatory : Pas Pas Pas Pas Pas Pas Pas Pas	Repo Repo Republic ss ss requency 00_ rements for per e environmental tics of Measure	Measured 94.02 iodic testing, description	: 9 F	Measu	red Frequ 1000.40
Characteristic Te Generated Sound P Frequency Generate Total Distortion The sound calibrator h the sound press Specific Tests	Approved ested ressure Level ed Nominal Level 94 as been shown to conform t sure level(s) and frequency	Signatory : Pas Pas Pas Pas Pas Pas Pas Pas	Repo	Measured 94.02 iodic testing, desc conditions under ment - Conditions	: 9 Fa	Measu nnex B of II tests were p	EC 60942-20
Characteristic Te Generated Sound Pr Frequency Generate Total Distortion The sound calibrator h the sound press Specific Tests Generated SPL Frequency	Approved ested ressure Level ed Nominal Level 94 as been shown to conform 1 sure level(s) and frequency ±0.14dB ±0.09%	Signatory : Pas Pas Pas Pas Pas Pas Pas Pas	Repo Repo Republic SS SS requency 00 rements for per environmental ties of Measure Environmental <i>Temperat</i>	Measured 94.02 iodic testing, desc conditions under- ment - Conditions ure 'unidity	: 9 F	Measu nnex B of II tests were p	red Frequ 1000.40
Characteristic Te Generated Sound Pr Frequency Generate Total Distortion	Approved ested ressure Level ed Nominal Level 94 as been shown to conform to sure level(s) and frequency ±0.14dB ±0.09% ±0.09%	Signatory : Resu Pas Pas Pas Pas Pas Pas Pas Pas	Repo Repo Report SS SS requency 00 rements for per environmental tites of Measure Environmental Temperat Relative I Barometri	Measured 94.02 iodic testing, desci conditions under ment - Conditions ure Humidity ic Pressure	: 9 F	Measu nnex B of II tests were p	red Frequ 1000.40
Characteristic Te Generated Sound Pr Frequency Generate Total Distortion The sound calibrator h the sound press Specific Tests Generated SPL Frequency	Approved ested ressure Level ed Nominal Level 94 as been shown to conform 1 sure level(s) and frequency ±0.14dB ±0.09%	Signatory : Resu Pas Pas Pas Pas Pas Pas Pas Pas	Repo Repo Report SS SS requency 00 rements for per environmental tites of Measure Environmental Temperat Relative I Barometri	Measured 94.02 iodic testing, desci conditions under ment - Conditions ure Humidity ic Pressure	: 9 F	Measu nnex B of II tests were p	red Freq 1000.40
Characteristic Te Generated Sound Pr Frequency Generate Total Distortion The sound calibrator h the sound press Specific Tests Generated SPL Frequency	Approved ested ressure Level ed Nominal Level 94 as been shown to conform to sure level(s) and frequency ±0.14dB ±0.09% ±0.09%	Signatory : Resu Pas Pas Pas Pas Pas Pas Pas Pas	Repo Repo Report SS SS requency 00 rements for per environmental tites of Measure Environmental Temperat Relative I Barometri	Measured 94.02 iodic testing, desci conditions under ment - Conditions ure Humidity ic Pressure	: 9 F	Measu nnex B of II tests were p	red Freq 1000.40
Characteristic Te Generated Sound Pr Frequency Generate Total Distortion The sound calibrator h the sound press Specific Tests Generated SPL Frequency Distortion	Approved ested ressure Level ed Nominal Level 94 as been shown to conform to sure level(s) and frequency ±0.14dB ±0.09% ±0.09% All uncertainties are	Signatory : Pas Pas Pas Pas Pas Pas Pas Pas	Repo Repo alt ss ss requency 00 rements for per environmental tites of Measure Environmental Temperat Relative I Barometr & confidence lev	Measured 94.02 iodic testing, desc conditions under ment - Conditions ure Humidity ic Pressure rel with a coverage	: 9 F Level tibed in A which the ±0.2°C ±2.4% ±0.015	Measu nnex B of II tests were p kkPa '2.	red Frequ 1000.40
Characteristic Te Generated Sound Pr Frequency Generate Total Distortion The sound calibrator h the sound press Specific Tests Generated SPL Frequency Distortion	Approved ested ressure Level ed Nominal Level 94 as been shown to conform to sure level(s) and frequency ±0.14dB ±0.09% ±0.09%	Signatory : Pas Pas Pas Pas Pas Pas Pas Pas	Repo Repo alt ss ss requency 00 rements for per environmental tites of Measure Environmental Temperat Relative I Barometr & confidence lev	Measured 94.02 iodic testing, desc conditions under ment - Conditions ure Humidity ic Pressure rel with a coverage	: 9 F Level tibed in A which the ±0.2°C ±2.4% ±0.015	Measu nnex B of II tests were p kkPa '2.	red Fre 1000.40

The results of the tests, calibrations and/or measurements included in this document are traceable to SI units.

NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

PAGE 1 OF 1

EDITATION

Appendix G – Community Complaints

Complaint No	Category	Date Received	Property	Detail	Follow Up Actions
102	Smoke	11/06/2020	Not provided	EPA anonymous complaint alleging continuous smoke emissions from site	Investigation with Site Managers found a furnace stopped for maintenance and when started up some smoke was generated which is normal for this activity. Provided EPA with response. EPA advised they would close this out in their system. No further action required.
103	Pathway beside Borg plant	20/06/2020	Fox Lane, Oberon	Complainant had bicycle incident due to the deviation of the cycle path, wanted to know when path would be reinstated.	WHSE Coordinator contacted resident to apologise and inform him that the temporary gravel path would be reinstated with bitumen within one week. No further correspondence received from complainant.
105	Noise	4/07/2020	Clover Lane, Oberon	Loud beeping noise heard from site	WHS Coordinator investigated and found that some EWPs had reversing alarm beepers fitted. WHS Coordinator advised Fleet who replaced beepers with non-tonal squawkers. WHS Coordinator advised resident of issue identified and action taken.
106	Noise	25/08/2020	Clover Lane, Oberon	Neighbouring resident contacted Construction Manager to complain about beeping noise	Construction Manager investigated and found an EWP with its horn enabled. Immediately took this out of service and Fleet disabled horn and fitted non-tonal squawker.
107	Noise, odour, smoke	1/09/2020	Herborn Street. Oberon	EPA received complaint for smoke emissions pouring out of a stack, pungent odour and loud noise after 8.30pm.	Discussion with Site Managers found no evidence to support the complainant's issues. Environmental Manager discussed complaint with EPA Officer who advised that no actions were required at this time.
108	Traffic	1/12/2020	Not provided	Borg truck pulled out in front of car	Environmental Manager advised Logistics Manager who counselled the truck driver.
110	Soot deposit on car	23/02/2020	Cunningham Street, Oberon	Resident complained that there were black soot spots on her car	WHSE Coordinator and Log Yard Manager met with resident to discuss complaint and informed resident that it would be more likely to have wood dust deposit on her car it this had come from Borg Panels. The resident agreed with this. No further action required. No evidence of breach found.

Complaint No	Category	Date Received	Property	Detail	Follow Up Actions
111	Noise	2/03/2021	Clover Lane, Oberon	Loud noise during the night Loud banging what sounded like bins being emptied	WHSE Coordinator contacted Log Yard Manager who advised that a section of the MDF chipper roof required replacement and had been removed. The Log Yard Manager contacted the resident to apologise and advise that the roof was being replaced that day. WHSE Coordinator inspected site area adjacent the resident and found no bins in that area that require emptying during the evening/night period.

Note: numbers 104 & 109 have been deleted due to duplicate in reporting

Appendix H – Community Consultation Minutes

Community Consultative Committee

Minutes

Meeting:	Community Consultative Committee Meeting
Venue: Date:	Borg Panels Conference Room – Chaired by Tony Truscott 14 April 2021
Time:	4.00pm
Present:	Julie Booth, Tony Truscott, Mike Bitzer, Ian Gordon, Trish Gordon,
Apologies:	Fran Charge, Tim Charge, Kathy Sajowitz,

Meeting opened. 4pm

Apologies submitted

Previous minutes reviewed and accepted.

Complaints

Panels Melamine complaint and noise complaint at Clover Lane from Construction.

HPP No recorded complaints from HPP.

Site Updates

HPP Report

Mike Bitzer

Safety Update

- One safety incident employee was pinched between packs. An ambulance and Safe Work called.
- Drug and Alcohol policy fully implemented and testing now taking place, as well as incident testing.
- Update: Upset conditions we update gate for any complaints.
- T.I. Safety perspective 2 injuries
- LTI employee with broken figure on rail of loader

Environment

• Site 1: Plan in place to clean up the site in 2022.

• HPP Website up and running.

<u>Market</u>

- 4 year deal with employees for the EA enables us to move on.
- Hauling logs from Wagga to keep the mill up to high volume Forestry Commission wood.
- Bushfires caused low volumes in some areas.
- Aggressive Capital expenditure mostly focusing on noise and modernisation.
- AKD exited warehouse on road less traffic.
- Sweep around the mill every 2 weeks to clean up.
- Market insane with the highest sales month in May.
- If immigration stays negative, then nervousness is caused.
- Tumut and Tumbarumba timber in short supply for mills.

Borg Panels (Including Woodchem and Structaflor)

Environment

- 2 as per earlier melamine and noise complaint.
- Trying to keep chip and dirt off roads and streets.

General Business

- Difficult 12-15 months with market volatility. Highs and lows effected different areas of the business and at different times.
- Covid 19 has made Imports, like parts etc, difficult to get in.
- Market is strong and has been busy.
- Long term, John Borg hasn't stopped investing and growing the business for sustainability, with a New LPM line with 12 new employees, a Thin Board line and a major warehouse extension.
- 6 new apprentices employed this year as well as contractors from overseas.
- Overall, 28 new employees.
- Council raised the question if we need more Community representation or feedback.

No issues from the Community.

Meeting Closed: 5.05

Next Meeting:

29 July 2021 at 4pm

Appendix I – Water Quality Exceedance Notifications

2 Wella Way Somersby NSW 2250 Australia

Ph: 02 4340 9800 Fax: 02 4340 5841

23 June 2020

EPL 3035 Water Quality Exceedance

This is to advise you that Borg Panels Oberon had an exceedance of concentration limit for TSS and stormwater sample event undertaken on 15 June 2020. Results reviewed from ALS Environmental on 23 June reports exceedance for TSS at 78mg/l (L2.5 concentration limit 50mg/l).

The two weeks preceding the sample event was a relatively dry period. A significant rain event the day before sampling occurred with the Site rain gauge recording 13.4mm.

No other exceedances of pollutants listed in condition L2.5 of EPL 3035 were reported for this sampling event.

This information will be included in EPL 3035 Annual Return and SSD 7016 Annual Review.

Regards

Jacqueline Blomberg Environmental Manager Borg Manufacturing

Proponent Details

Personal Details

Title	Mrs
First Name	Jacqueline
Last name	Blomberg
Email	blombergj@borgs.com.au
Phone	0436609556
Role/Position	Environmental Manager
Address	2 WELLA WAY SOMERSBY New South Wales 2250 AUS

Company Details

Applying as a company/business?

Yes	
Company Name	BORG MANUFACTURING PTY LIMITED
ABN	31003246357
Branch Name	

Primary Contact

Title	Mr
First Name	Victor
Last Name	Bendevski
Email	bendevskiv@borgs.com.au
Phone	0410327635
Role/Position	Administrator

Post Approval Details

Project:

Oberon Borg Timber Complex - SSD-7016-PA-9

Name of Document EPL 3035 Water Quality Exceedance

Related matter Incident or non-compliance Report

Type of Document Lodgement New Document

Description of the document and reason for submission / Overview of changes made to existing documents notification of exceedance of water quality concentration discharge limit for TSS as set in EPL 3035

Applicable Conditions

Schedule	Condition
Schedule 2	B31

Consultation through the Major Projects portal

Consultation required as part of the preparation of the document? No

Attachment of Post Approval application

File Name	Category
Notification - EPL 3035 Water Quality Exceedance.pdf	Post Approval Document

2 Wella Way Somersby NSW 2250 Australia Ph: 02 4340 9800

Fax: 02 4340 5841

2 October 2020

EPL 3035 Water Quality Exceedance

This is to advise you that Borg Panels Oberon had an exceedance of concentration limit for BOD for stormwater sample event undertaken on 23 September 2020. Results reviewed from ALS Environmental on 2 October reports exceedance for BOD at 32mg/l (L2.5 concentration limit 20mg/l).

No unusual conditions were recorded during this sample event.

No other exceedances of pollutants listed in condition L2.5 of EPL 3035 were reported for this sampling event.

This information will be included in EPL 3035 Annual Return and SSD 7016 Annual Review.

Regards

Jacqueline Blomberg Environmental Manager Borg Manufacturing

Proponent Details

Personal Details

Title	Mrs
First Name	Jacqueline
Last name	Blomberg
Email	blombergj@borgs.com.au
Phone	0436609556
Role/Position	Environmental Manager
Address	2 WELLA WAY SOMERSBY New South Wales 2250 AUS

Company Details

Applying as a company/business?

Yes	
Company Name	BORG MANUFACTURING PTY LIMITED
ABN	31003246357
Branch Name	

Primary Contact

Title	Mr
First Name	Victor
Last Name	Bendevski
Email	bendevskiv@borgs.com.au
Phone	0410327635
Role/Position	Administrator

Post Approval Details

Project:

Oberon Borg Timber Complex - SSD-7016-PA-13

Name of Document Water Quality Exceedance Notification

Related matter Incident or non-compliance Report

Type of Document Lodgement New Document

Description of the document and reason for submission / Overview of changes made to existing documents notification of exceedance of water quality concentration discharge limit for BOD as set in EPL 3035

Applicable Conditions

Schedule	Condition
Schedule 2	B31

Consultation through the Major Projects portal

Consultation required as part of the preparation of the document? No

Attachment of Post Approval application

File Name	Category
Notification - EPL 3035 Water Quality Exceedance.pdf	Post Approval Document

2 Wella Way Somersby NSW 2250 Australia Ph: 02 4340 9800

Ph: 02 4340 9800 Fax: 02 4340 5841

29 October 2020

EPL 3035 Water Quality Exceedance

This is to advise you that Borg Panels Oberon had an exceedance of concentration limit for pH for stormwater sample event undertaken on 21 October 2020. Results reviewed from ALS Environmental on 29 October reports exceedance for pH at 8.86 (L2.5 concentration limit between 6.5 and 8.5).

No unusual conditions were recorded during this sample event.

No other exceedances of pollutants listed in condition L2.5 of EPL 3035 were reported for this sampling event.

This information will be included in EPL 3035 Annual Return and SSD 7016 Annual Review.

Regards

Jacqueline Blomberg Environmental Manager Borg Manufacturing

Proponent Details

Personal Details

Title	Mrs
First Name	Jacqueline
Last name	Blomberg
Email	blombergj@borgs.com.au
Phone	0436609556
Role/Position	Environmental Manager
Address	2 WELLA WAY SOMERSBY New South Wales 2250 AUS

Company Details

Applying as a company/business?

Yes	
Company Name	BORG MANUFACTURING PTY LIMITED
ABN	31003246357
Branch Name	

Primary Contact

Title	Mr
First Name	Victor
Last Name	Bendevski
Email	bendevskiv@borgs.com.au
Phone	0410327635
Role/Position	Administrator

Post Approval Details

Project:

Oberon Borg Timber Complex - SSD-7016-PA-16

Name of Document Water Quality Exceedance

Related matter Incident or non-compliance Report

Type of Document Lodgement New Document

Description of the document and reason for submission / Overview of changes made to existing documents water quality exceedance notification

Applicable Conditions

Schedule	Condition
2	B31

Consultation through the Major Projects portal

Consultation required as part of the preparation of the document? No

Attachment of Post Approval application

File Name	Category
Notification - EPL 3035 Water Quality Exceedance.pdf	Post Approval Document

2 Wella Way Somersby NSW 2250 Australia Ph: 02 4340 9800

Fax: 02 4340 9800

1 February 2021

EPL 3035 Water Quality Exceedance

This is to advise you that Borg Panels Oberon had an exceedance of concentration limit for pH for stormwater sample event undertaken on 20 January 2021. Results received from ALS Environmental on 29 January 2021 reports exceedance for pH at 8.63pH. L2.5 concentration limit is between 6.5 and 8.5pH.

No unusual conditions were recorded during this sample event.

No other exceedances of pollutants listed in condition L2.5 of EPL 3035 were reported for this sampling event.

This information will be included in EPL 3035 Annual Return and SSD 7016 Annual Review.

Regards

Jacqueline Blomberg Environmental Manager Borg Manufacturing

Proponent Details

Personal Details

Title	Mrs
First Name	Jacqueline
Last name	Blomberg
Email	blombergj@borgs.com.au
Phone	0436609556
Role/Position	Environmental Manager
Address	2 WELLA WAY SOMERSBY New South Wales 2250 AUS

Company Details

Applying as a company/business?

Yes	
Company Name	BORG MANUFACTURING PTY LIMITED
ABN	31003246357
Branch Name	

Primary Contact

Title	Mr
First Name	Victor
Last Name	Bendevski
Email	bendevskiv@borgs.com.au
Phone	0410327635
Role/Position	Administrator

Post Approval Details

Project:

Oberon Borg Timber Complex - SSD-7016-PA-24

Name of Document Water Quality Exceedance

Related matter Incident or non-compliance Report

Type of Document Lodgement New Document

Description of the document and reason for submission / Overview of changes made to existing documents water quality discharge exceedance notification

Applicable Conditions

Schedule	Condition
2	B31

Consultation through the Major Projects portal

Consultation required as part of the preparation of the document? No

Attachment of Post Approval application

File Name	Category
Notification - EPL 3035 Water Quality Exceedance.pdf	Post Approval Document

Ph: 02 4340 9800 Fax: 02 4340 5841

19 February 2021

EPL 3035 Water Quality Exceedance

This is to advise you that Borg Panels Oberon had an exceedance of concentration limit for Total Nitrogen for stormwater sample event undertaken on 10 February 2021. Results reviewed from ALS Environmental on 19 February reports exceedance for Total N at 11.9mg/l (L2.5 concentration limit 10mg/l).

No unusual conditions were recorded during this sample event.

No other exceedances of pollutants listed in condition L2.5 of EPL 3035 were reported for this sampling event.

This information will be included in EPL 3035 Annual Return and SSD 7016 Annual Review.

Regards

Personal Details

Title	Mrs
First Name	Jacqueline
Last name	Blomberg
Email	blombergj@borgs.com.au
Phone	0436609556
Role/Position	Environmental Manager
Address	2 WELLA WAY SOMERSBY New South Wales 2250 AUS

Company Details

Applying as a company/business?

Yes	
Company Name	BORG MANUFACTURING PTY LIMITED
ABN	31003246357
Branch Name	

Primary Contact

Title	Mr
First Name	Victor
Last Name	Bendevski
Email	bendevskiv@borgs.com.au
Phone	0410327635
Role/Position	Administrator

Post Approval Details

Project:

Oberon Borg Timber Complex - SSD-7016-PA-28

Name of Document Water Quality Exceedance

Related matter Incident or non-compliance Report

Type of Document Lodgement New Document

Description of the document and reason for submission / Overview of changes made to existing documents Water quality discharge limit exceedance for Total N

Applicable Conditions

Schedule	Condition

Consultation through the Major Projects portal

Consultation required as part of the preparation of the document? No

File Name	Category
Notification - EPL 3035 Water Quality Exceedance.pdf	Post Approval Document

Ph: 02 4340 9800 Fax: 02 4340 5841

1 March 2021

EPL 3035 Water Quality Exceedance

This notification is to advise you that Borg Panels Oberon had an exceedance of concentration limit for Total Nitrogen for stormwater sample event undertaken on 17 February 2021. Results received from ALS Environmental reports exceedance for Total N at 15.8mg/l. EPL 3035 condition L2.5 concentration limit is 10mg/l.

No other exceedances were reported.

There was a significant rain event (i.e. >10mm) prior to this monitoring event. It is plausible that this exceedance is due to the mobilisation of wood material from site during the rain event.

Supporting this assumption is the result for Colour at 70 PCU. Though this is not an exceedance of EPL 3035 discharge limit, it may show that the Total N result is due to organic matter in the sample.

This information will be included in EPL 3035 Annual Return and SSD 7016 Annual Review.

Regards

Personal Details

Title	Mrs
First Name	Jacqueline
Last name	Blomberg
Email	blombergj@borgs.com.au
Phone	0436609556
Role/Position	Environmental Manager
Address	2 WELLA WAY SOMERSBY New South Wales 2250 AUS

Company Details

Applying as a company/business?

Yes	
Company Name	BORG MANUFACTURING PTY LIMITED
ABN	31003246357
Branch Name	

Primary Contact

Title	Mr
First Name	Victor
Last Name	Bendevski
Email	bendevskiv@borgs.com.au
Phone	0410327635
Role/Position	Administrator

Post Approval Details

Project:

Oberon Borg Timber Complex - SSD-7016-PA-29

Name of Document Water Quality Exceedance

Related matter Incident or non-compliance Report

Type of Document Lodgement New Document

Description of the document and reason for submission / Overview of changes made to existing documents Notification of water quality discharge limit exceedance

Applicable Conditions

Schedule	Condition
2	B31

Consultation through the Major Projects portal

Consultation required as part of the preparation of the document? No

File Name	Category
Notification - EPL 3035 Water Quality Exceedance.pdf	Post Approval Document

Fax: 02 4340 5841

8 March 2021

EPL 3035 Water Quality Exceedance

This notification is to advise you that Borg Panels Oberon had an exceedance of concentration limit for Total Suspended Solids (TSS) for stormwater sample event undertaken on 24 February 2021 at sample point identified as EPA 1 V-notch weir.

Results received from ALS Environmental reports exceedance for TSS at 656mg/l. EPL 3035 condition L2.5 concentration discharge limit is 50mg/l.

Construction were undertaking activities to the northern swale for the stormwater system component of works when an unexpected rain event occurred. This was a significant rain event that was greater than 10mm. Construction had installed sufficient erosion and sediment controls to this area as shown in Attachment 1 consisting of sediment fence and ballast in an attempt to manager their work area. A fairly large area of earth is required to be exposed for this portion of works, staging was not an option, this increased the potential for sediment laden runoff. The Construction Coordinator has advised that he checks the weather forecast daily which assists in determining the days/weeks scope of works though as stated, this event was unexpected.

An attempt was made by the site WHSE Coordinator to inspect downstream of the Borg discharge point (i.e. Kings Stockyard Creek off Hazelgrove Road) however the vegetation was too thick to get through to visually inspect the Creek.

No other exceedances were reported for this sample location.

This information will be included in EPL 3035 Annual Return and SSD 7016 Annual Review.

Regards

2 Wella Way Somersby NSW 2250 Australia

> Ph: 02 4340 9800 Fax: 02 4340 5841

ATTACHMENT 1 – PHOTO LOG

ERSED Controls to the Northern Swale

Personal Details

Title	Mrs
First Name	Jacqueline
Last name	Blomberg
Email	blombergj@borgs.com.au
Phone	0436609556
Role/Position	Environmental Manager
Address	2 WELLA WAY SOMERSBY New South Wales 2250 AUS

Company Details

Applying as a company/business?

Yes	
Company Name	BORG MANUFACTURING PTY LIMITED
ABN	31003246357
Branch Name	

Primary Contact

Title	Mr
First Name	Victor
Last Name	Bendevski
Email	bendevskiv@borgs.com.au
Phone	0410327635
Role/Position	Administrator

Post Approval Details

Project:

Oberon Borg Timber Complex - SSD-7016-PA-30

Name of Document Water Quality Exceedance

Related matter Incident or non-compliance Report

Type of Document Lodgement New Document

Description of the document and reason for submission / Overview of changes made to existing documents Notification of water quality discharge limit exceedance

Applicable Conditions

Schedule	Condition
2	B31

Consultation through the Major Projects portal

Consultation required as part of the preparation of the document? No

File Name	Category
Notification - EPL 3035 Water Quality Exceedance.pdf	Post Approval Document

Fax: 02 4340 5841

5 March 2021

EPL 3035 Water Quality Exceedance

This notification is to advise you that Borg Panels Oberon had an exceedance of concentration limit for Total Nitrogen for stormwater sample event undertaken on 24 February 2021.

Results received from ALS Environmental reports exceedance for Total N at 15.5mg/l. EPL 3035 condition L2.5 concentration limit is 10mg/l.

No other exceedances were reported.

There was a significant rain event (i.e. >10mm) prior to this monitoring event.

A site investigation has commenced in an attempt to determine if site contributors other than organic material potentially contributed to this exceedance.

This information will be included in EPL 3035 Annual Return and SSD 7016 Annual Review.

Regards

Personal Details

Title	Mrs
First Name	Jacqueline
Last name	Blomberg
Email	blombergj@borgs.com.au
Phone	0436609556
Role/Position	Environmental Manager
Address	2 WELLA WAY SOMERSBY New South Wales 2250 AUS

Company Details

Applying as a company/business?

Yes	
Company Name	BORG MANUFACTURING PTY LIMITED
ABN	31003246357
Branch Name	

Primary Contact

Title	Mr
First Name	Victor
Last Name	Bendevski
Email	bendevskiv@borgs.com.au
Phone	0410327635
Role/Position	Administrator

Post Approval Details

Project:

Oberon Borg Timber Complex - SSD-7016-PA-31

Name of Document Water Quality Exceedance

Related matter Incident or non-compliance Report

Type of Document Lodgement New Document

Description of the document and reason for submission / Overview of changes made to existing documents Notification of water quality discharge limit exceedance

Applicable Conditions

Schedule	Condition
2	B31

Consultation through the Major Projects portal

Consultation required as part of the preparation of the document? No

File Name	Category
Notification - EPL 3035 Water Quality Exceedance.pdf	Post Approval Document

2 Wella Way Somersby NSW 2250 Australia

Ph: 02 4340 9800 Fax: 02 4340 5841

30 March 2021

EPL 3035 Water Quality Exceedance

This is to advise you that Borg Panels Oberon had an exceedance of concentration limit for oil and grease for stormwater sample events undertaken on 16 March 2021 at EPA Point 1 and Point 28. Results reviewed from ALS Environmental reports exceedance for oil and grease at Point 1 at 15mg/l and at Point 2, 11mg/l (L2.5 concentration limit 10mg/l).

No other exceedances of pollutants listed in condition L2.5 of EPL 3035 were reported for these sampling events.

This information will be included in EPL 3035 Annual Return and SSD 7016 Annual Review.

Regards

Personal Details

Title	Mrs
First Name	Jacqueline
Last name	Blomberg
Email	blombergj@borgs.com.au
Phone	0436609556
Role/Position	Environmental Manager
Address	2 WELLA WAY SOMERSBY New South Wales 2250 AUS

Company Details

Applying as a company/business?

Yes	
Company Name	BORG MANUFACTURING PTY LIMITED
ABN	31003246357
Branch Name	

Primary Contact

Title	Mr
First Name	Victor
Last Name	Bendevski
Email	bendevskiv@borgs.com.au
Phone	0410327635
Role/Position	Administrator

Post Approval Details

Project:

Borg Timber Complex Oberon - SSD-7016-PA-33

Name of Document Water Quality Exceedance

Related matter Incident or non-compliance Report

Type of Document Lodgement New Document

Description of the document and reason for submission / Overview of changes made to existing documents water quality discharge limit exceedances

Applicable Conditions

Schedule	Condition
2	B31

Consultation through the Major Projects portal

Consultation required as part of the preparation of the document? No

File Name	Category
Notification - EPL 3035 Water Quality Exceedance.pdf	Post Approval Document

Ph: 02 4340 9800 Fax: 02 4340 5841

9 April 2021

EPL 3035 Water Quality Exceedance

This is to advise you that Borg Panels Oberon had an exceedance of concentration limit for Total Suspended Solids (TSS) for stormwater sample event undertaken on 24 March 2021. Results reviewed from ALS Environmental on 9 April reports exceedance for TSS at 54mg/l (L2.5 concentration limit 50mg/l).

No unusual conditions were recorded during this sample event.

No other exceedances of pollutants listed in condition L2.5 of EPL 3035 were reported for this sampling event.

This information will be included in EPL 3035 Annual Return and SSD 7016 Annual Review.

Regards

Personal Details

Title	Mrs
First Name	Jacqueline
Last name	Blomberg
Email	blombergj@borgs.com.au
Phone	0436609556
Role/Position	Environmental Manager
Address	2 WELLA WAY SOMERSBY New South Wales 2250 AUS

Company Details

Applying as a company/business?

Yes	
Company Name	BORG MANUFACTURING PTY LIMITED
ABN	31003246357
Branch Name	

Primary Contact

Title	Mr
First Name	Victor
Last Name	Bendevski
Email	bendevskiv@borgs.com.au
Phone	0410327635
Role/Position	Administrator

Post Approval Details

Project:

Borg Timber Complex Oberon - SSD-7016-PA-34

Name of Document Water Quality Exceedance

Related matter Incident or non-compliance Report

Type of Document Lodgement New Document

Description of the document and reason for submission / Overview of changes made to existing documents notification of exceedance of water quality discharge limit

Applicable Conditions

Schedule	Condition
2	B31

Consultation through the Major Projects portal

Consultation required as part of the preparation of the document? No

File Name	Category
Notification - EPL 3035 Water Quality Exceedance.pdf	Post Approval Document